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Abstract 
 
The goal of this work was the development of a programmer interface that 
interacts with two different program libraries. The programmer interface 
was intented to enable the application of Boolean set operations on 
simulation data which contain geometric information about 3D solid object 
surfaces. The data are to be obtained from micro-fabrication simulation. The 
programmer interface first reads the simulation data over the I/O interface 
of the so called Wafer State Server (WSS) and then applies Boolean set 
operations with the help of the Computational Geometry Algorithms Library 
(CGAL).  
 

 
  
To sum up, this study deals with a programmer interface enabling Boolean 
set operations needed for some of the topographic process simulation steps 
in the field of micro-fabrication simulation.  
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Chapter 1 
 

Introduction 
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Oscar Wilde 
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Chapter 1 

1. Introduction 
 
In geometry, a polyhedron is simply a three-dimensional solid, which 
consists of a collection of polygons, usually joined at their edges. The term 
polyhedron is used somewhat differently in algebraic topology, where it is 
defined as a space that can be built from such building blocks as line 
segments, triangles, tetrahedra, and their higher dimensional analogs by 
gluing them together along their faces. More specifically, a polyhedron can 
be defined as the underlying space of a boundary structure [Wr09]. This 
underlying space can be obtained from the intersections of halfspaces. Since 
they give a computer realizable model for solid boundaries, these definitions 
are used for describing solid objects and related data structures. 
 
Algorithms for carrying out Boolean set operations on solid objects are one of 
the most important facilities in a solid modelling system. Such algorithms 
are used to unite, intersect, or subtract solid objects. For this purpose the 
algorithms need a complex description of solid objects. They also need a data 
structure for evaluating Boolean operations and storing their results. These 
operations (as illustrated in Fig. 1.1) are used generally for building more 
complicated 3D solids from primitive ones.  

 
Computational Geometry Algorithms Library (CGAL) offers the possibility of 
applying Boolean set operations on 3D solid objects. In general, CGAL, as a 
programmer's library, enables geometric computations with a large 
collection of algorithms and data structures which can be used for different 
purposes. In the context of this study, the framework of CGAL is used as the 
basis for the above discussed Boolean set operations.  
 
Wafer State Server (WSS) is also a programmer's library which can be 
defined as a tool which aims at integrating process and device simulators in 

  
Fig. 1.1 Boolean set operations on 3D solids. 
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the field of micro-fabrication. This library is used partially for accessing the 
simulation data in our work. 
 
In order to realize these operations, the following steps are carried out: The 
programmer interface reads the simulation data delivered over the WSS I/O 
interface. As a part of CGAL, 3D-Nef polyhedron supports the Boolean set 
operations. However, Nef polyhedrons can be constructed from closed 3D-
polyhedral surfaces, which are another part of CGAL. Therefore, in the first 
step, using the geometric information received from WSS, 3D-Polyhedral 
Surfaces are built. In the next step, these built structures are transformed 
into 3D-Nef polyhedrons on which Boolean set operations are applied. The 
result of these operations are converted again into 3D-Polyhedral Surfaces 
in order to give outputs in some of the standard file formats such as Open 
Inventor,  WaveFront Object File and VRML. Fig. 1.2 gives an overview of 
the whole process flow which is subject to this work.  
 

 
The industrial application of this study is in process simulation in micro-
fabrication. The main focus of this study is on the process steps named 
etching and deposition. These terms and further details about WSS are 
introduced in Section 1.2. 

 
 

Fig 1.2 Symbolized process flow. 
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1.1 Motivation 

The two main goals of this study are: 
 
1. Providing a programmer interface to CGAL which can be used in the 
context of micro-fabrication simulation. Especially, Boolean set operations of 
3D geometrical objects are to be provided. 
  
2. Exploring the possibilities and concepts provided by CGAL. The gained 
experiences and knowledge are to be documented in a concise way to 
establish a reference for related future work, especially in the field of micro-
fabrication simulation. CGAL is a useful library, which is often used in 
scientific projects in the last few years. 
  
We use the 3D-Nef polyhedron part of the CGAL for necessary Boolean set 
operations. Nef Polyhedra were introduced by Walter Nef in his seminal 
1978 book1 on polyhedra. Nef polyhedra are defined as the closure of half-
spaces under Boolean set operations. They can be used to represent non-
manifold situations, open and closed boundaries, as well as mixed 
dimensional complexes. CGAL uses a data structure for the three-
dimensional version of Nef polyhedra. It also contains algorithms, which are 
necessary for applying topological and Boolean set operations on Nef 
polyhedra. This part of the algorithm library is called 3D-Nef-Polyhedron. 
The first serious implementation of Nef polyhedra in CGAL took place in the 
release 3.1 of CGAL. In December 2004, this implementation was still in 
preparation. Using Boolean set operations on 3D solid objects was not 
possible in previous versions of CGAL. This new possibility is utilized in our 
implementation. Some necessary modules and a real integration with CGAL 
are promised for the feature releases, and are not supported at the moment. 
Therefore, an implementation which uses this new part of the CGAL should 
have a flexible design for ease of use as well as for new developments in the 
future. Such an implementation should also offer more possibilities for 
debugging.  
 

                                                 
1 Nef explains the aim of his contribution to the polyhedra in his book named „Beiträge zur Theorie der Polyeder“ 
as follows: 
„…, und da ich inzwischen bemerkt hatte, dass sich im Rahmen des verhältnismäßig einfachen Polyeder Problems 
rechts anspruchsvolle Fragen stellen, entschloss ich mich, meine Untersuchungen weiterzuführen, wobei die Frage,  
was den überhaupt unter einem Polyeder zu verstehen sei, an den Anfang zu stellen war. Eine entsprechende 
Definition wird sich in der Computergraphischen Praxis bewahren, wenn sie eine benutzerfreundliche 
Art der Beschreibung eines Polyeders und die Schaffung brauchbarer Algorithmen für die notwendigen, von 
der Beschreibung eines Polyeders zu einem Bild desselben führenden, Berechnungen gestattet. Als wichtiges 
Hilfsmittel für die Beschreibung komplizierter Polyeder erweist sich (vgl. [7]) seine Bildung durch Vereinigen, 
Schneiden und Subtrahieren einfacherer Polyeder…“ 
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The implemented programmer interface is designed under these 
considerations. It has a modularized structure. Debug, display, and output 
possibilities can be used easily in every step of a session. Described modules 
are independent from each other which mean that users can include only 
the necessary module(s). Since defined objects can share the same data 
resources, it is possible to work even with small resources without conflicts. 
 
The interface consists of five modules which are Extractor, Creator, 
Displayer, Checker and Outer. Extractor is used to extract surface 
information of wafer components from WSS data files. Creator class 
describes different methods for creating Polyhedrons/NEF-Polyhedrons with 
the extracted surface information. This class is also responsible for Boolean 
Set Operations. Creator can scan the externally stored results of operations 
from previous sessions. Checker and Displayer are responsible for debug and 
displaying. With Outer module offers the user different choices for the 
output format of the results.  
 
CGAL was initially developed by a consortium of seven different Institutes. 
The CGAL-project has been funded officially since October 1996. The team 
of developers consists of academic professionals from the field of 
computational geometry and related areas, especially research assistants 
and PhD students.  
 
The CGAL Release 1.2 of January 1999 
consists of approximately 110,000 lines 
of C++ source code for the library, plus 
50,000 lines for accompanying sources, 
such as the test suite and example programs, not counting C++ comments or 
empty lines [Cp07]. CGAL has become an Open Source Project with Release 
3.0 in November 2003 and the current release 3.1 is from December 2004. 
CGAL 3.1 is the release, which is used in this study.  
 
The goal of CGAL is to make available to users in industry and the 
academic world the most important efficient solutions to basic geometric 
problems developed in the area of computational geometry in a software 
library. The homepage of CGAL [Wr01] provides a list of publications about 
CGAL and related research: previous overviews, the first design of the 
geometric kernel, recent overviews and descriptions of the current design. 
CGAL is discussed in detail in the chapter 2. 
 
Scientific libraries developed within the academic circles have larger 
theoretical boundaries than the ones developed for commercial purposes. 
CGAL is a large and well defined C++ library which is based on different 
fields of mathematics such as computational geometry and topology. Even in 
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the reference manual of the CGAL, we observe a large number of 
mathematical terms and definitions as well as several recursive references 
to scientific papers. In addition, a high percentage of the CGAL code has a 
highly flexible design which is based on generic programming paradigms. 
One of the main difficulties in working with CGAL is the highly demanding 
and time-consuming process of becoming familiar with this library. It is 
rather difficult to have a brief overview of CGAL for a quick start with the 
selected components for limited purposes. The terminological complexity in 
the language of CGAL documentation also constitutes some problems. 
 
During this thesis, very much time and effort have been spent for clarifying 
the terminological complexity discussed above, and for a quick-start to 
CGAL.  It is important to give a comprehensive overview about this huge 
library, in order to make further explanations about the work done for this 
thesis focused and conclusive. Necessary terms should be briefly introduced 
before relevant parts of library are presented.  
 
This study is presented under the considerations discussed above. Figures 
used in this study are illustrated as simple as possible, and the given 
examples are selected carefully among the most explanatory ones. In 
addition, for the sake of brevity, we have tried to avoid unnecessary 
explanations which exceed the boundaries of this study. To the extent 
possible, informal short descriptions are preferred instead of long and closed 
formal definitions.  
 
To sum up, this study serves two main purposes. First, the Chapter CGAL 
gives a comprehensive overview about future works on the CGAL. The 
implemented programmer interface can easily read and process WSS data 
files in the actual release of the CGAL. Furthermore, since some new 
features are promised for the future releases of the CGAL, this study might 
be the right start for those who wish to learn and use the CGAL for Boolean 
set operations on 3D-Solid Objects. 

1.2 Industrial Application 

Micro fabrication is the science of modifying, growing or depositing thin 
layers of materials, typically on wafers2, and patterning those films into 
precise structures [P07]. The repeated application of these processes creates 
devices ranging from simple solar cells and sensors to complex microchips. 
Commonly, the term wafer denotes a circular disk that serves as base 
                                                 
2  wafer  1. Semiconductor die. 2. A thin, flat disk, ring, or plate around which the contacts of a rotary switch are 
spaced. 3. A thin square or rectangle of dielectric material used as the dielectric member in a fixed capacitor. 4. A 
plate cut from a crystal (e.g., a quartz wafer) [B02]. 
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Fig. 1.3 Wafer 
fabrication. 

 

material in the semiconductor fabrication process. 
Hundreds of process steps are performed on wafer to 
create devices like transistors or diodes [P01]. These 
repeated process steps produce considerable changes in 
the surface profile as it undergoes various effects of 
etching3 and deposition4. This problem known as surface 
topography problem in micro fabrication. Wafer 
fabrication complicated process flow discussed in [B01] 
and simplified respect to our goals in Fig. 1.3.  
 
Etching means cropping of useless part(s) from surface 
of material. Etching always comes with an etching mask 
(is usually “defined” by photo-resist using lithography 
techniques), can prevent material from being etched by 
etchant5. By deposition step, a layer/material is being 
deposited on another structure. Particles are deposited 
on the surface, which causes build up in the profile [B01, 
Wr11]. These process steps etching and deposition are 
illustrated in Fig.1.4. 
 
Process and device simulations are well accepted in the wafer fabrication. 
They present an invaluable help in improving existing technologies, and can 
drastically reduce development time and costs. Simulation programs are 
based on TCAD (Technology Computer Aided Design) model, work in 

                                                 
3 etching 1. Chemically eating away a metal to form a desired pattern, such as an etched circuit. 2. Thinning a 
quartz-crystal plate by slowly eroding one or both of its faces with hydrofluoric acid to fine-tune the resonant 
frequency [B02]. 
4 deposition The application of a layer of one substance (usually a metal) to the surface of another (the substrate), 
as in evaporation, sputtering, electroplating, silk-screening, etc [B02]. 
5 etchant  Any  substance such as cupric chloride, ferrous chloride, or hydrochloric acid, used in etching [B02]. 

 

Fig. 1.4 Etching and Deposition. 
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diverse steps along the fabrication process, and serve on different purposes. 
TCAD tools which are designed for device simulations are unrelated to this 
work. Related applications are classified in TCAD model as Topography 
Simulators [P01]. Our work is focused on process simulations, especially, on 
simulations in etching and deposition steps. 
 
TCAD specifies a data model which has some major requirements. The tool 
must store the result of simulation for later reference (Visualization, input 
for other simulation etc.). The tool needs a standardized way to interact 
with different meshing tools. The user needs support to extract topological 
information to manipulate the underlying geometry after a topography step. 
All data structures and algorithms offered by the data model should be 
available in two and three dimensions [P01].  
 
A TCAD conform wafer description contains the geometry (topography) of 
the device structure, and quantities as they are used by the simulator 
models. Topography simulators need a geometrical view of the data. In 
addition, the topography is altered during such a process simulation. A 
deposition step will introduce completely new regions. In an etching step, 
existing regions can completely vanish, can be split into several regions, or 
can be merged into a single region [P01]. 
 
As a TCAD tool, Wafer State Server (WSS) is an object oriented data model 
for above introduced field. This data model gives a unification of what data 
is common to all tools. The data model aims at the mentioned integration of 
process and device simulators. The data model is realized as a C++ class 
library and deals with several aspects of TCAD simulations. These aspects 
include I/O operations, meshing and algorithms like the extraction of 
interfaces between two simulation domains. The usage of well defined 
interfaces gives the possibility to easily exchange algorithms without 
breaking the simulator [P01].  

 

Fig. 1.5 The concept of theWafer State Server (WSS). 
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The meshing interface consists of classes and methods to define geometry to 
start the gridding mechanism and to retrieve the generated grid elements. 
The I/O interface comprises a set of classes and methods to retrieve data 
from and to store data on a persistent wafer, respectively. The core interface 
contains data structures to hold wafer data and methods to perform data 
manipulations. (Fig.1.5). WSS data model designed to store whole 
information about simulation such as material properties, physical 
quantities or geometric information. Public Reader Interface of WSS provide 
to access geometric information of components on wafer during the 
simulation [P01].  
 
In addition, WSS development has not been really finalized. WSS has only a 
relational API document on the Web which is created automatically with 
some documentation tools during its development. For this reason, it is not 
possible to say something explanatory on WSS.  Fortunately, we have used 
WSS only partially as a secondary library for inputs. Therefore, only a small 
portion of this study contains information on WSS.  However, WSS still 
helps us to understand the industrial sense of this study. 
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Chapter 2 
 

CGAL 

 
 

 
 

There are 10 kinds of people in the world 
 – Those who understand binary and those who don't.  

 
From GNU Humour Collection
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Chapter 2 

2. CGAL 
The Computational Geometry Algorithm Library (CGAL) is a well described 
C++ Library which is implemented using the terms and models of the 
computational geometry. This chapter consists of four parts. The first part 
deals with terms and models of computational geometry and related 
problems which influenced the design of the CGAL. Its second part gives the 
library-, design- and a programmer interface-overview about the CGAL. 
These overviews are followed by introduction of Kernel-objects, -operations 
and -representations which constitutes the heart of the CGAL. In the final 
part of this chapter, there is a relatively detailed discussion on 3D 
polyhedral surfaces and 3D-Nef Polyhedron, which are used for Boolean set 
Operations.  

2.1 Preliminaries  

Before starting, we need to answer some questions such as: "Why has CGAL 
such a complex structure?"; "Why do they use special implementation 
techniques such as traits?"; "Why does CGAL provide such a comprehensive 
support for well-known libraries?" Answers to these questions would give a 
brief idea about the structure of the CGAL. In his paper [P02], T. Godfried 
gives a rather interesting overview on computational geometry. In 
particular, the following example selected by the author and the following 
definitions are useful for providing a meaningful introduction to the CGAL:  
  

Consider the point p and the line l arranged in the plane as illustrated in 
the Fig.2.1 on the left side. Does the point p lie on, above or below the line l?  
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This question is a geometric predicate, and asks for a geometric property of 
the given set of geometric objects {p,l}.  
 
In this simple problem let us assume that  
 

• the point p is specified in terms of its x and y coordinates ( , )p px y ,  
• the line l is given by the linear equation ( 0,  )y ax b a a= + ≠ ≠ ±∞ .  
 

To solve this problem it suffices to compute the intersection point of the 
vertical line through p with l.  

 
• Call this point z with coordinates ( , )z zx y .   
• Then z px x=  and zy  may be calculated using the equation z py ax b= + .  
• If ( )z py y>  then p lies below l,  
• if ( )z py y<  then p lies above l and  
• if ( )z py y=  then p lies on the line l. 

 
From the sight of computational geometry, this algorithm is only one 
approach to solve this problem. In a narrow sense, computational geometry 
is concerned with computing geometric properties of sets of geometric 
objects in space.  In a broader sense, it is concerned with the design and 
analysis of algorithms for solving geometric problems. In a deeper sense, it 
is the study of the inherent computational complexity of geometric problems 
under varying models of computation. At a low level, computational 
geometry is concerned with the comparative study of fundamental 
algorithms with the goal of determining, in different computational 
contexts, which algorithm run faster, which require less memory space and 
which are more robust with respect to numerical errors [P02].  
  
A geometric problem can be seen as a mapping from a set of permitted input 
data, consisting of a combinatorial and numerical part, to set of valid input 
data, again consisting of a combinatorial and numerical part. A geometric 
algorithm solves a problem if it computes the output specified by the 
problem mapping for a given input. For some geometric problems the 
numerical data of the output are a subset of the data of the input.  Those 
geometric problems called selective. In other geometric problems new 
geometric objects are created which involve new numerical data that have to 
be computed from the input data. Such problems are called constructive 
[Cp01]. 
 
For instance, 2D Convex Hull Problem is a selective problem [Cp01], because 
output set H(P) is a subset of input set P (Fig 2.2).  
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An example of Input-Output model for this problem might look as follows:  
 
INPUT: A point set 2

1 2, , { , , }nP P n P p p p∈ = =\ "  
• Numerical part: Coordinate values of points. ,  ( , ),  1,i i i ip P p x y i n∀ ∈ = =  
• Combinatorial part: The assignment of the coordinate values to the 

points in the plane.  
 
OUTPUT: A set of all extreme points H(P) Œ P. In other words, it is the 
smallest convex polygon containing all input points. The combinatorial part 
of the output might be the sorted cyclic sequence of the points on the convex 
hull in counter-clockwise order.  
 
Second classical geometric problem is intersection of line segments. Output is 
a set of intersection points of lines. Since the intersection points are in 
general not part of the input, the problem is constructive [Cp01]. A variant 
may ask only for all pairs of segments that have a point in common. This 
version is selective.  
 
The geometric computation model in 
Fig.2.3 is taken from a presentation 
file [Cd07] about the first versions of 
the CGAL. According the below model, 
an algorithm is defined in terms of the 
geometric objects and operations on 
these objects. Typical operations are 
decision predicates such as 
lexicographic orders or orientation 
tests. Other common operations are 
basic constructions such as the 
midpoint of two points, geometric 
transformations, intersections, the 
application of other algorithms, etc. 

 

Fig. 2.2 2D-Convex hull of a point set  

 Fig. 2.3 Geometric Computation 

model. 
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On the other hand, geometric algorithms are usually designed and proven to 
be correct in a computational model that assumes exact computation over 
real numbers. In implementations of geometric algorithms, exact real 
arithmetic is mostly replaced by the fast finite precision floating-point 
arithmetic [P03] provided by the hardware of a computer system. For some 
problems and restricted sets of input data, this approach works well, but in 
many implementations the effects of squeezing the infinite set of real 
numbers into the finite set of floating point numbers can cause catastrophic 
errors in practice.  
 
Usually, the input data to a computation are produced by previous 
computations whose results are only approximate. Due to rounding errors 
many implementations of geometric algorithms crash, loop forever or in the 
best case simply compute the wrong results for some of the inputs for which 
they are supposed to work. There is some solutions to compute exactly but 
these fault the efficiency of calculations [Cp01].  
 
The conditionals in a program are most critical because they determine the 
flow of control. Geometric predicates are conditionals of geometric 
algorithms. Mutually contradicting decisions violating basic laws of 
geometry may take the algorithm to a state which could never be reached 
with correct decisions. Since the algorithm was not designed for such states, 
it crashes. Therefore segmention faults and bus errors are more likely than 
incorrect results [Cp01].  
 
For the above mentioned reasons, the CGAL supports exchangeable 
geometric kernels and number types. This gives the CGAL also high 
flexibility. Geometric algorithms as defined by the CGAL are commonly 
separated into layers, as it is shown in the left diagram in Figure 2.4. These 
layers can be defined as follows: the algorithm itself, a geometric kernel 
with geometric objects and primitive operations, and the number type used 
to represent the coordinates of the geometric objects [Cp12].  

 

 
Fig. 2.4 Different layers in geometric algorithms and specialization of 

predicates and algorithms from left to right [Cp12]. 
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The Figure 2.4 illustrates this specialization in following steps. (a) Three 
layers: the algorithm, geometric objects with predicates and number types. 
(b) Two layers: the algorithm with geometric objects and predicates 
specialized on the built-in number type double. (c) The algorithm itself 
specialized for the built-in number type double and a specific 
implementation of the predicates. 

2.2 Library Structure 

CGAL, the Computational Geometry Algorithms Library, is written in C++ 
and is made of several modular units. In this modular structure several 
bigger units can be distinguished:  
 

• Core library with basic non-geometric functionality,  
• Geometric kernel for primitives,  
• Algorithms Library with more complicated geometric structures and 

functionality,  
• Support library that offers supplementary functionality. 

 
Both the Core library and the Support library deal with things that are not 
purely geometric in nature. Core library, responsible for non-geometric base 
functionality of CGAL which contains configurations, assertions, 
enumerations or circulators. In other words, the Core library offers 
functionality that is needed in the Geometric kernel or the Algorithms 
Library. Also, the first three units in the list can be seen as layers built on 
top of each other. The support library stands apart from the rest. The core 
library and the geometric kernel together are called the CGAL kernel.  
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Fig. 2.5 Structure of CGAL 
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Geometric kernel contains simple geometric objects like points, lines, circles, 
triangles, sphere or tetrahedra. The criterion for simplicity is that those 
objects have constant size. There are geometric predicates and constructions 
on those objects such as orientation tests or intersections. The geometric 
kernel is split in three parts that deal with 2-dimensional objects, 3-
dimensional objects and general d-dimensional objects. For all dimensions 
there are Cartesian and homogeneous representations.  
 
Algorithms library is a collection of more complex geometric objects and 
data structures. This library is made of mostly independent parts, 
independent from each other, but even independent from the CGAL kernel. 
Actual content of algorithm library is summarized in Table 2.1 to give an 
idea about the components [Cd01]. 

 
Support Library consists of non-geometric support facilities, such as support 
for number types [Wr02, Wr03, Wr04], STL extensions for CGAL, handles, 
circulators, protected access to internal representations (modifiers), 
geometric object generators such as random point sets, timers, I/O stream 
operators and other stream support including PostScript, colours, windows, 
and visualization tools GeoWin [Wr02], Geomview [Wr05] and a Qt-widget 
[Wr06]. 

2.3 Generic Design of CGAL 

The design of the CGAL library ensues five main goals [Cp05]: Flexibility, 
Correctness, Robustness, Efficiency and ease of use. To realizing this design 
goals used special generic programming techniques such as templates and 
traits. Following paragraph is a well description about CGAL, is obtained 
exactly from CGAL developer manual [Cd02]: 

• 2D Convex Hulls and Extreme Points  
• 3D Convex Hulls  
• dD Convex Hulls and Delaunay Triangulations  
• Planar Nef Polyhedra  
• Nef Polyhedra embedded on the Sphere  
• 3D Nef Polyhedron  
• 2D Planar Maps  
• 2D Planar Maps of Intersecting Curves  
• 2D Triangulations and Data Structure  
• 3D Triangulations and Data Structure  
• 2D Conforming Triangulations and Meshes  
• Intersecting Sequences of Iso oriented Boxes  
• Polygons and Polygon Operations  
• Planar Polygon Partitioning  
• 2D Segment Voronoi Diagrams  

• 2D Alpha Shapes  
• 3D Alpha Shapes  
• 2D Arrangements  
• Topological Maps  
• Sweep line  
• 3D Polyhedral Surfaces  
• Halfedge Data Structure  
• 2D Apollonius graphs  
• dD Range and Segment Tree  
• Interpolation  
• Geometric Optimisation  
• 2D Search Structures  
• Interval Skip List  
• Spatial Searching 

 

Table 2.1 The existing Algorithms and Data Structures 
 in actual version of CGAL 3.1 
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"The first part of library CGAL kernel, which consists of constant-size non-
modifiable geometric primitive objects and operations on these objects. The 
objects are represented both as stand-alone classes that are parameterized 
by a representation class, which specifies the underlying number types used 
for calculations and as members of the kernel classes, which allows for more 
flexibility and adaptability of the kernel. The second part algorithms library 
is a collection of basic geometric data structures and algorithms, which are 
parameterized by traits classes that define the interface between the data 
structure or algorithm and the primitives they use. In many cases, the 
kernel classes provided in CGAL can be used as traits classes for these data 
structures and algorithms".  

 
This generic design is symbolized in figure 2.6. As seen above, a number 
type, representation and trait are used to parametrizing the algorithm 
CGAL::Polyhedron_3. With this technique, the same algorithm can 
response the demands of different kinds of applications. 
 
Since the structure of CGAL affected from the five design goals introduced 
above, we want to give also some details about them. These details selected 
from [Cp05].  
 
First goal of CGAL design is flexibility. This term described in the design of 
CGAL under 4 sub terms: 
 

 
typedef CGAL::Gmpz      Arithmetic; 
typedef CGAL::Homogeneus<Arithmetic>   Representation; 
typedef CGAL::Polyhedron_traits_3<Representation> Traits; 
typedef CGAL::Polyhedron_3<Traits>   Polyhedron; 
 
int main() { 
    Polyhedron P; //Instance 
    ...... 
    if ( P.is_closed() ) cout << "2 Manifold"; 
    ...... 
} 

 
Fig. 2.6 Generic design of CGAL. 
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• Modularity: A clear structuring of CGAL into modules with as few 
dependencies as possible helps a user in learning and using CGAL since 
the focus can be narrowed on those modules that are actually of interest. 
Natural examples are the distinction between 2D and 3D geometry, or 
separate modules for convex hull computation and point set 
triangulation. 

 
• Adaptability: CGAL might be used in an already established 

environment with geometric classes and algorithms. An example is the 
application of the convex hull algorithm to a user defined point type, 
which differs from the CGAL point type. 

 
• Extensibility: It should be possible to easily integrate new objects and 

algorithms into CGAL. As a typical instance: easily add new 
geometric objects to the library and to provide corresponding intersection 
functions similar to those existing for native CGAL objects. 

 
• Openness: CGAL should be open to coexist with other libraries or better 

to work together with other libraries and programs. Example: GMP 
[Wr03]  for number types,  Qt  [Wr06] for visualization. 

 
Second term is ease of use. CGAL Programmer Interface optimized with 4 
principals: 
 

• Smooth Learning Curve 
• Uniformity 
• Complete and Minimal Interfaces 
• Rich and Complete Functionality 

 
C++ users have a smooth learning curve with CGAL, since it is based in 
many places on concepts known from STL or the other parts of the C++ 
Standard Library. An example is the use of streams and stream operators in 
CGAL. Another example is the use of container classes and algorithms from 
the STL. More details about it discussed in next section also.  
 
A uniform look-and-feel of the design in CGAL will help in learning and 
remembering. A function name once learned for a specific class should not 
be named differently for another class. Exceptions should be minimized in 
the design. An object or module should be complete in its functionality but 
should not provide additional decorating functionality. 
 
In a modularized program the correctness of a module is determined by its 
own correctness and the correctness of all the modules it depends on. In 
order to get correct results, correct algorithms and data structures must be 
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used. Exactness should not be confused with correctness in the sense of 
reliability. There is nothing wrong with approximation algorithms 
computing approximate solutions as long as they do what they pretend to 
do. Also an algorithm handling only non-degenerate cases can be correct 
with respect to its specification although in CGAL handling degeneracies6 at 
the first hand [Cp05].  
 
Efficiency means in CGAL, time and space efficiency. Efficiency is a 
competing goal with respect to flexibility, robustness, and ease of use. But 
efficiency has first priority in CGAL. As long as it is a small constant 
fraction CGAL are willing to sacrifice efficiency in favour of the other goals. 
In fact, the techniques used for flexibility in CGAL enable also to achieve 
optimal efficiency. Whenever possible and known, the most efficient version 
of an algorithm is used. Sometimes multiple versions of an algorithm are 
supplied. For example if dealing with degeneracies is expensive a faster but 
less general version might also be supplied. [Cp05]. 
 
Most geometric algorithms are a mix of numerical and combinatorial 
computations. This leads to a fundamental problem with the 
implementation of geometric algorithms. This specific nature is usually the 
root of the non-robustness problems. Some details about the problems are 
given already in chapter 2.1. There are many approaches to this problem, 
one of them is to compute exactly (compute so accurate that all decisions 
made by the algorithm are exact) which is possible in many cases but more 
expensive than standard floating-point arithmetic. CGAL use Exact 
Computation Paradigm7 for robustness [Cd01].  
 

2.4 Robustness Solutions 

There are several solutions in the literature to solve the non-robustness 
issues. Since some of these solutions are used mainly by CGAL, or are 
related with our study, we want to announce with basic principals of them. 
These basic introductions summarized from the CGAL documents [Cp01, 
Cp02, Cp03 and Cp06]:  
 
Exact integer and rational arithmetic: With the integer arithmetic 
provided by the hardware only overflow may occur, but no rounding errors.  

                                                 
6 Degeneracies arise from the special position of two geometric objects. For example, two segments in general 
position either do not intersect or intersect at a point interior to both segments. Two intersecting segments in special 
position may overlap, may share a common endpoint with or without being collinear, may have one segment 
endpoint interior to the other segment, etc. 
7 Discussed in C. K. Yap and T. Dubé: The exact computation paradigm, 2nd edition, 1995. 
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Many predicates include only expressions involving operations +, -, *. Such 
problems are called rational.. A rational number can be exactly stored as a 
pair of arbitrary precision integers representing numerator and 
denominator respectively. Practically, division operation can be avoided in 
rational predicates. As instance CGAL::Gmpq is a rational number allowed 
by the support library of CGAL 
 
Homogeneous Representation:  Homogeneous coordinates known from 
projective geometry and computer graphics can also be used to avoid 
division. In Homogeneous representation, a point in d-dimensional affine 
space with Cartesian coordinates 0 1 1( , , )dx x x −…  is represented by a vector 

0 1 1( , , , )d dhx hx hx hx−…  such that i i dx hx hx=  for all 0 1i d≤ ≤ − . The homogenizing 
coordinates dhx  is a common denominator of the coordinates. The 
intersection of two lines is a well-known example (Fig. 2.7) to see the 
advantage of Homogeneous representation.  

 
Interval arithmetic : In interval arithmetic real numbers are represented 
by intervals, whose endpoints are floating-point numbers. Principal, a literal 
x is defined as interval [ , ]start endx x . Basic operations for bounded intervals 
defined as follows: 
 

[ ] [ ] [ ]
[ ] [ ] [ ]
[ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ]

, , ,  

, , ,  

, , min( , , , ),  max( , , , )

, , , 1 ,  1 c , if 0 ,

a b c d a c b d

a b c d a d b c

a b c d ac bc ad bd ac bc ad bd

a b c d a b d c d

+ = + +

− = − −

× =

÷ = × ÷ ÷ ∉

 

 
Multi-precision number types / Expression trees: Some programmer 
libraries defined special number types with higher precision and better 
arithmetic methods to compute exactly. LEDA [Wr02] and CORE [Wr04] are 
such libraries that provided also in CGAL.  

Fig. 2.7 Avoided division operation by homogeneous representation 



 25

As instance, a LEDA::bigfloat number is given by two integers s and e 
where s is the significant and e is the exponent. The tuple (s, e) represents 
the real number s . 2e. Special bigfloat values behave as defined by the 
IEEE floating point standard such as{ ,  0,   }NaN ± ±∞ . Arithmetic on 
bigfloats uses two parameters: prec and mode. Prec is precision of the result 
in number of binary digits, and mode is the one of the pre-defined rounding 
modes.  

Some of these number types support also incrementally constructed 
numbers with the four basic operations (+, -, *, /) and k-th root operation. In 
order to enable re-computation, expression trees used in CORE::Expr or 
LEDA::real to record the computation history of a numerical value. This is 
beneficial if input of a computation is produced by previous computations. 
Figure 2.8 illustrate a 2D orientation predicate with an expression tree to 
find the orientation of three points such as 2, ,p q r∈\ . 

 
Filtering Techniques: With these techniques, useless expensive 
calculations can be filtered for efficiency.  One of them is Lazy Evaluation 
and practically expressions are only evaluated once and then only if the 
evaluation is actually needed. More generally, wait as soon as possible to 
evaluate an expression. Filtering techniques actually reduce the 
computational complexity of an algorithm and rigorously used in CGAL. 

 

 
Fig. 2.8 An Expression Tree 
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2.5 CGAL Programmer Interface 

In previous section introduced design goals presented to users with the 
following C++ concepts in CGAL implementation [Cp05]: Polymorphism 
(using inheritance from base classes with virtual functions) and generic 
programming. Shortly, CGAL is a well designed adaptation of generic 
programming in field Computational Geometry.  As a first step in this 
subsection, we want to be remembered some terms of this concept. What is 
generic programming? A brief answer for this question is founded in [Cd08] 
which was also a presentation about CGAL: 
 
"Generic programming is a sub-discipline of computer science that deals with 
finding abstract representations of efficient algorithms, data structures, and 
other software concepts, and with their systematic organization. The goal of 
generic programming is to express algorithms and data structures in a 
broadly adaptable, interoperable form that allows their direct use in software 
construction." 
 
Templates are program recipes where certain types are only given 
symbolically the so called template arguments. The compiler replaces these 
arguments with actual types where the program recipe is actually used at 
the place of the template instantiation. Using of templates with a classical 
example illustrated in Fig 2.9.  
 

 
STL (Standard Template Library) is a good example for the generic 
programming paradigm. The main source of its generality and flexibility be 
caused by the separation of concepts and models. Containers, Algorithms, 
Function objects and Iterators are four significant abstract models of STL. 
STL mechanism and related terms are shown with vector containers in 
Fig.2.10. Shortly, Containers are objects that contain other objects. 
Sequence Containers are linear accessible such as vector, list, queue, stack. 
Associative containers are accessible over a key such as map, set, multimap. 
Algorithms act on containers, manipulate the content of containers such as 

Definition Instantiation 

template <class T>  
void swap(T& a,  T& b) { 
 
 T tmp;  
 tmp = a; a = b; b = tmp; 
 
} 

int main(){ 
 
  int a,b; 
  double x,y; 
  swap<int>(a,b); 
  swap<double>(x,y); 
} 

Fig. 2.9 Template Mechanism 
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sort, search, transform. Iterators are pointers, cycle thru contents of  
containers. 
 
C++ introduces generic programming, with templates, but the same 
algorithm will not work optimally with every data structure. Sorting a 
linked list is different to sorting an array. Sorted data can be searched much 
faster than unsorted data. The C++ traits8 technique provides an answer. 
An interesting example (copying blocks of data) is below about the using of 
traits [Wr13, Wr14] : 
 
 
 template<class T> class block_util { 
    public: 
       static void copy( T * dest, const T * src, int n ) { 
    for( int i=0; i<n; i++ ) dest[i] = src[i]; 
 } 

                                                 
8 “Think of a trait as a small object whose main purpose is to carry information used by another object 
or algorithm to determine policy or implementation details” say the creator of C++ Bjarne 
Stroustrup about traits. [B05] 
 

 
 

Fig. 2.10 STL Mechanism. 
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 }; 
// The completely general template above, is called the primary class 
template. For character data, it is often more efficient to use the standard 
library routine memcpy. To make the compiler call memcpy for characters, 
define a full specialization of block_util<char> as shown below. 
 
template<> class block_util <char>{ 
    public: 
       static void copy( char* dest, char* src, int n ) { 
    memcpy( dest, src, n ); 
 } 
 }; 
 

 
Practically, CGAL is a template collection which achieves high flexibility in 
use. Choosing the underlying number types and arithmetic for geometric 
objects, using different types of arithmetic simultaneously or choosing 
between implementations with fast but occasionally inexact arithmetic and 
implementations  guaranteeing exact computation and exact results are 
possible with templates. Furthermore, CGAL programmer interface based 
on STL Mechanism. Modifying geometric object properties such as affine 
transformations are defined as function objects, and can be applied with 
standard STL algorithms. If we need to traverse on edges, points or facets of 
a polyhedron then we should use iterators. Using STL containers to store 
some objects give better adaptability with CGAL programmer interface. The 
following program is a good CGAL example which shows the using STL and 
template mechanism. It computes the convex hull of a set of 250 random 
points chosen from a sphere of radius 100. It then determines if the 
resulting hull is a segment or a polyhedron: 
 
 
// including the necessary header files for our computations. 
#include <CGAL/Homogeneous.h> 
#include <CGAL/point_generators_3.h> 
#include <CGAL/copy_n.h> 
#include <CGAL/Convex_hull_traits_3.h> 
#include <CGAL/convex_hull_3.h> 
#include <vector> 
 
// selecting a number type for object representations. 
CGAL is running on different platforms. Some of the libraries are not 
supported for all OS platforms (i.e GMP not offered for Windows). User can 
check this with compiler directives.   
#ifdef CGAL_USE_GMP 
 #include <CGAL/Gmpz.h> 
 typedef CGAL::Gmpz NumberType; 
#else 
 #include <CGAL/MP_Float.h> 
 typedef CGAL::MP_Float NumberType; 
#endif 
 
// Type definitions 
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Homogeneous kernel is parameterized with the number type selected above. Here 
Polyhedron_3 object uses class Convex_Hull_traits_3 as a trait class. 
Segment_3 is an object of geometric kernel; it is used also with selected 
kernel representation. 
typedef CGAL::Homogeneous<NumberType>             Kernel; 
typedef CGAL::Convex_hull_traits_3<Kernel>        Traits; 
typedef Traits::Polyhedron_3                      Polyhedron_3; 
typedef Kernel::Segment_3                         Segment_3; 
 
// A point creator definition. The template Creator_uniform_3 is used with 
standart type double and previously defined point type Point_3.  
typedef Kernel::Point_3                           Point_3; 
typedef CGAL::Creator_uniform_3<double, Point_3>  PointCreator; 
 
int main() 
{ 
 
// The class template Random_points_in_sphere_3<Point_3, Creator> is an input 
iterator of support library which create points uniformly distributed in an 
open sphere. This template is parameterized with above defined PointCreator as 
a trait class. Generated 250 points randomly on a sphere of radius 100.0 are 
stored into standart vector container with copy_n. 
  CGAL::Random_points_in_sphere_3<Point_3, PointCreator> gen(100.0); 
  std::vector<Point_3> points; 
  CGAL::copy_n( gen, 250, std::back_inserter(points) ); 
   
// define a generic CGAL::object to hold convex hull.  
The algorithm convex_hull_3 computes convex hull from the points which are 
stored in vector container above. The result set of this points is stored in 
ch_object. 
  CGAL::Object ch_object; 
  CGAL::convex_hull_3(points.begin(), points.end(), ch_object); 
 
// Now we should determine the type of the result object. This is possible 
with the method CGAL::assign. This method is used to checking polymorphic 
return types which we need after some geometric constructions. 
  Segment_3 segment; 
  Polyhedron_3 polyhedron; 
 
  if ( CGAL::assign(segment, ch_object) ) 
     std::cout << "convex hull is a segment " << std::endl; 
 
  else if ( CGAL::assign (polyhedron, ch_object) ) 
     std::cout << "convex hull is a polyhedron " << std::endl; 
 
  else 
     std::cout << "convex hull error!" << std::endl; 
 
  return 0; 
} 
 

2.5.1 Circulators  

Since circular sequences do not allow for efficient iterators, CGAL have 
introduced the new concept of circulators. This is a relevant concept for 
Computational Geometry applications. They share most of the requirements 
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of iterators, while the main difference is the lack of a past-the-end position 
in the sequence. The concept of iterator in STL is tailored for linear 
sequences. In contrast, circular sequences occur naturally in many 
combinatorial and geometric structures. Examples are polyhedral surfaces 
and planar maps, where the edges emanating from a vertex or the edges 
around a facet form a circular sequence [Cp05].  

Circulators have a different notion of reach ability and ranges than 
iterators. Due to the circularity of the sequence this is always true if both 
circulators refer to items of the same sequence. In particular, c is always 
reachable from c. Given two circulators c and d, the range [c,d) denotes all 
circulators obtained by starting with c and advancing c until d is reached, 
but does not include d, for  d c≠ . So far it is the same range definition as for 
iterators. The difference lies in the use of [c,c) to denote all items in the 
circular sequence, whereas for an iterator i the range [i,i) denotes the 
empty range. An example [Cp05] of a generic function contains() 
illustrates the use of circulators. 

 
 template <class InputCirculator, class T> 
 bool contains( InputCirculator c, InputCirculator d, const T& value) { 
     
      if (c != NULL) { 
 do {  
 
   if (*c == value) return true;  
 
        } while (++c != d); 
     } 
 
     return false; 
 } 
 

2.5.2 Assertions and Checks  

CGAL has a modularized project structure. As instance, separate modules 
for convex hull computation and point set triangulation. It is important to 
test modules independently and as early as possible. One specific technique 
for quality assurance are assertions, assertions of invariants of an algorithm 
and the self-checking of functions at runtime. They are of great help in the 
implementation process and can reduce debugging efforts drastically. The 
user should be able to switch of the checking e.g when code goes in 
production mode. There are four types of checks [Cd02]:  
 

• Pre-conditions check if a routine has been called in a proper fashion.  
• Post-conditions check if a routine does what it promises to do.  
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• Assertions are other checks that do not fit in the above two 
categories, e.g. they can be used to check invariants.  

• Warnings are checks for which it is not so severe if they fail. 
 
Failures of the first three types are errors and lead to a halt of the program, 
failures of the last one only lead to a warning. Checks of all four categories 
can be marked with one or both of the following attributes. 
 

• Expensive checks take considerable time to compute. “Considerable” 
is an imprecise phrase. Checks that add less than 10 percent to the 
execution time of their routine are not expensive.  

• Exactness checks rely on exact arithmetic. For example, if the 
intersection of two lines is computed, the post-condition of this 
routine may state that the intersection point lies on both lines.  

 
By default, all standard checks (without any attribute) are enabled, while 
expensive and exactness checks are disabled [Cd02]. It is however possible to 
turn those on/off through the use of compile time switches. Following 
switches makes disable the standard checks: 
 

• CGAL_KERNEL_NO_PRECONDITIONS 
• CGAL_KERNEL_NO_POSTCONDITIONS 
• CGAL_KERNEL_NO_ASSERTIONS  
• CGAL_KERNEL_NO_WARNINGS 

 
And the following switches can be used to to make enable the expensive and 
exactness checks: 
 

• CGAL_KERNEL_CHECK_EXPENSIVE 
• CGAL_KERNEL_CHECK_EXACTNESS 

 

2.5.3 I/O Streams  

All classes in the CGAL kernel provide input and output operators for IO 
streams. The basic task of such an operator is to produce a representation of 
an object that can be written as a sequence of characters on devices as a 
console, a file, or a pipe. In CGAL, mode of the IO-stream can take one of 
this predefined enumeration property:   
 

Mode = { ASCII = 0 , BINARY , PRETTY };  
 
In ASCII mode, objects are written as a set of numbers, e.g. the coordinates 
of a point or the coefficients of a line, in a machine independent format. In 
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BINARY mode, data are written in a binary format, e.g. a double is 
represented as a sequence of four byte. The format depends on the machine. 
The mode PRETTY serves mainly for debugging as the type of the geometric 
object is written, as well as the data defining the object. For example for a 
point at the origin with Cartesian double coordinates, the output would be 
PointC2(0.0, 0.0). At the moment CGAL does not provide input 
operations for pretty printed data. By default a stream is in ASCII mode 
[Cd01].  
 
CGAL provides the following functions to modify the mode of an IO stream.  
 

• IO::Mode  set_mode ( std::ios& s, IO::Mode m)   
• IO::Mode  set_ascii_mode ( std::ios& s)   
• IO::Mode  set_binary_mode ( std::ios& s)   
• IO::Mode  set_pretty_mode ( std::ios& s)   

 
Following example shows using IO-Streams with CGAL objects: 
 
 
 typedef CGAL::Point_2< CGAL::Cartesian<double> >     Point; 
 typedef CGAL::Segment_2< CGAL::Cartesian<double> >   Segment; 
  
 Point p, q;  
 Segment s; 
 
 CGAL::set_ascii_mode(std::cin);  
 
 std::cin >> p >> q; 
 
 std::ifstream f("data.txt");   
 CGAL::set_binary_mode(f);  
 
 f >> s >> p; 
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2.6 Kernel Objects and Operations 

Simple geometric objects such as points, vectors, lines and operations on 
them are took place in CGAL kernel. Defined algorithms in the CGAL either 
use these simple objects as an argument or return as the result of 
operations. Kernel objects are summarized in Table 2.2. 

A point is a point in the Euclidean space Ed, a vector is the difference of two 
points  2 1,p p   and denotes the direction and the distance from 1 2  p to p in the 
vector space dE . They are different mathematical concepts. These concepts 
should be well separated. Trying to add two points to each other or taking 
the distance from a vector to a point will lead to compilation errors.  
 
CGAL defines a symbolic constant ORIGIN, which denotes the point at the 
origin. This constant can be used to convert between vectors and points in 
an efficient way. We can subtract two points from each other, in which case 
we get a vector, and can add a vector to a point, resulting in a point. In the 
same way it is possible to subtract the ORIGIN from a point, resulting in a 
vector with the same coordinates as the point, and we can add a vector to the 
ORIGIN, resulting in a point with the same coordinates as the vector. The 
value ORIGIN is used as the ORIGIN in all dimensions [Cd01, Cd09]. See the 
following example: 
 
 
  Point_2  < Cartesian<double> >  p(1.0, 1.0), q; 
  Vector_2 < Cartesian<double> >  v; 
 
  v = p - ORIGIN;  // Result is vector(1.0,1.0) 
  q = ORIGIN + v*2;  // Result is point(2.0,2.0) 
 
  Vector_2 < Cartesian<double> > v2(q-p); // identical v2(1.0,1.0) 
 

2-D 3-D d-D 
Aff_transformation_2 
Bbox_2 
Circle_2 
Direction_2 
Iso_rectangle_2 
Line_2 
Point_2 
Ray_2 
Segment_2 
Triangle_2 
Vector_2 

Aff_transformation_3 
Bbox_3 
Direction_3 
Iso_cuboid_3 
Line_3 
Plane_3 
Point_3 
Ray_3 
Segment_3 
Sphere_3 
Tetrahedron_3 
Triangle_3 
Vector_3 

 

Aff_transformation_d 
Direction_d 
Hyperplane_d 
Iso_box_d 
Line_d 
Point_d 
Ray_d 
Segment_d 
Sphere_d 
Vector_d 

Table 2.2.  Kernel Objects. 
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Lines (Line_2, Line_3) in CGAL are oriented. In two-dimensional space, 
they induce a partition of the plane into a positive side and a negative side. 
Any two points on a line induce an orientation of this line. A ray (Ray_2, 
Ray_3) is semi-infinite interval on a line, and this line is oriented from the 
finite endpoint of this interval towards any other point in this interval. A 
segment (Segment_2, Segment_3) is a bounded interval on a directed line, 
and the endpoints are ordered so that they induce the same direction as that 
of the line.  
 
Geometric objects defined in CGAL Kernel, has mostly more than one 
constructor. As instance, planes are affine subspaces of dimension two in E3, 
passing through three points, or a point and a line, ray, or segment. Just 
like lines, planes are oriented and partition space into a positive side and a 
negative side [Cd01]. Following definitions obtained from Reference pages of 
CGAL which can be seen seven different constructor and the definition of 
plane.  
 

  
CGAL::Plane_3<Kernel> 
 
Definition : An object h of the data type Plane_3<Kernel> is an oriented plane in the three 
dimensional Euclidean space E3. It is defined by the set of points with Cartesian coordinates (x,y,z) 
that satisfy the plane equation h : a x + b y + c z + d = 0 . The plane splits E3 in a positive and a 
negative side. A point p with Cartesian coordinates (px, py, pz) is on the positive side of h, iff a px + 
b py +c pz + d > 0. It is on the negative side, iff a px + b py +c pz + d < 0.  
 
Creation : 
Plane_3<Kernel> h(Kernel::RT a, Kernel::RT b, Kernel::RT c, Kernel::RT d); 
Plane_3<Kernel> h(Point_3<Kernel> p, Point_3<Kernel> q, Point_3<Kernel> r); 
Plane_3<Kernel> h(Point_3<Kernel> p, Vector_3<Kernel> v); 
Plane_3<Kernel> h(Point_3<Kernel> p, Direction_3<Kernel> d); 
Plane_3<Kernel> h(Line_3<Kernel> l, Point_3<Kernel> p); 
Plane_3<Kernel> h(Ray_3<Kernel> r, Point_3<Kernel> p); 
Plane_3<Kernel> h(Segment_3<Kernel> s, Point_3<Kernel> p); 
 

 
As instance, first constructor creates a plane h defined by the equation 

.   .   .     0x y za p b p c p d+ + + = . h is degenerate if    a b c= = . Second constructor 
creates a plane h passing through the points p, q and r. The plane is 
oriented such that p, q and r are oriented in a positive sense (that is counter-
clockwise) when seen from the positive side of h. h is degenerate if the points 
are collinear. Third constructor introduces a plane h that passes through 
point p and that is orthogonal to v etc. 
 
Useful operators (e.g. == , != , [ ] ) are overloaded in the definition of some 
kernel objects. Objects have some predicates and miscellaneous methods. 
Following method interface belong bto the kernel object  Triangle_3, is 
also obtained from reference pages of CGAL. 
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Operations :  
Bool t.operator==(t2) Test for equality: two triangles t and t2 are 

equal, iff there exists a cyclic permutation of the vertices of t2, such 
that they are equal to the vertices of t. 

Bool t.operator!=(t2) Test for inequality. 
Point_3<Kernel> t.vertex (int i)  returns the i'th vertex modulo 3 of t. 
Point_3<Kernel> t.operator[](int i)  returns vertex(int i). 
Plane_3<Kernel> t.supporting_plane() returns the supporting plane of t, with 

same orientation. 
Predicates:  
bool               t.is_degenerate()t is degenerate if its vertices are collinear. 
bool   t.has_on (Point_3<Kernel> p) A point is on t, if it is on a 

vertex, an edge or the face of t. 
Miscellaneous:  
Kernel::FT t.squared_area()returns a square of the area of t. 
Bbox_3 t.bbox() returns a bounding box containing t 
Triangle_3<Kernel> t.transform ( Aff_transformation_3<Kernel> at)returns 

the triangle obtained by applying at on the three vertices of t.t 
 
Full dimensional objects and their boundaries are represented by the same 
type, e.g. halfspaces and hyperplanes are not distinguished, neither are 
balls and spheres and discs and circles. Such objects split the ambient space 
into two full-dimensional parts, a bounded part and an unbounded part (e.g. 
circles), or two unbounded parts (e.g. hyperplanes). By default these objects 
are oriented, i.e., one of the resulting parts is called the positive side, the 
other one is called the negative side. Both of these may be unbounded. For 
these objects there is a function oriented_side() that determines 
whether a test point is on the positive side, the negative side, or on the 
oriented boundary. These function returns a value of type Oriented_side. 
Those objects that split the space in a bounded and an unbounded part, 
have a member function bounded_side() with return type 
Bounded_side. If an object is lower dimensional, e.g. a triangle in three-
dimensional space or a segment in two-dimensional space, there is only a 
test whether a point belongs to the object or not. This member function, 
which takes a point as an argument and returns a boolean value, is called 
has_on(). This geometric predicates return some enumerations. This 
enumeration types and their possible values listed in table 2.3.  
 

Enum Values 
Angle { OBTUSE, RIGHT, ACUTE } 

Bounded_side { ON_UNBOUNDED_SIDE,  
 ON_BOUNDARY,                          

  ON_BOUNDED_SIDE } 

Comparison_result {SMALLER,EQUAL,LARGER} 

Sign { NEGATIVE, POSITIVE, ZERO } 

Oriented_side { ON_NEGATIVE_SIDE,  
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 ON_ORIENTED_BOUNDARY,                 
  ON_POSITIVE_SIDE } 

Orientation { RIGHT_TURN = NEGATIVE, 
  LEFT_TURN  = POSITIVE, 
  COLLINEAR  = ZERO, 
  CLOCKWISE  = NEGATIVE 
  COUNTER_CLOCKWISE = POSITIVE, 
  COPLANAR          = ZERO, 
  DEGENERATE        = ZERO } 

Table 2.3.  Enumerations. 
 

Predicates are at the heart of CGAL kernel. CGAL uses the term predicate 
in a generalized sense. CGAL provides predicates for the orientation of point 
sets (orientation, leftturn, rightturn, collinear, coplanar), for comparing 
points according to some given order, especially for comparing Cartesian 
coordinates (e.g. lexicographically_xyz_smaller), in-circle and in-sphere tests, 
and predicates to compare distances.  
 
Fig. 2.11 illustrates the orientation results of three points, which defined as 
a type Point_2 with the predicate CGAL::orientation (p1, p2, p3). 
 

 
 
Moreover, some member functions of kernel objects are constructions. 
Functions and function objects that generate objects that are neither of type 
bool nor enum types are called constructions such as circumcenter(), or 
centroid(). Constructions involve computation of new numerical values 
and may be imprecise due to rounding errors unless a kernel with an exact 
number type is used. CGAL also provides a set of functions that detect or 
compute the intersection between objects of the 2D kernel, and many objects 
in the 3D kernel, and functions to calculate their squared distance.  
 
Some functions can return different types of objects. The class Object 
provides an abstraction. An object obj of the class Object can represent 

 
 

Fig. 2.11 Possible orientation results of three points. 
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an arbitrary class. This is done with the global function make_object(). 
This encapsulation mechanism requires the use of assign to use the 
functionality of the encapsulated class. In the following example, the 
Object class is used as return value for the intersection computation 
between two segment, as there are possibly different return values (in this 
fall segment or point). 
 
 
   Object obj = CGAL::intersection(segment_1, segment_2); 
 
    if     (assign(point, obj))     {/* do something with point */ } 
    else if   (assign(segment, obj))  {/* do something with segment*/} 
 
 
The kernel operations present two interfaces to the user: global functions 
like CGAL::orientation(p,q,r) which are convenient to use separately, 
and corresponding functors like Kernel::Orientation_2 which are more 
convenient to use with STL algorithms. 

2.7 Kernel Representations 

Almost all the kernel objects (and the corresponding functions) are 
templates with a parameter that allows the user to choose the 
representation of the kernel objects. A type that is used as an argument for 
this parameter must fulfil certain requirements on syntax and semantics. 
The list of requirements defines an abstract kernel concept. For all kernel 
objects the types CGAL::Object<Kernel> and Kernel::Object are 
identical. A kernel class as parameter, which itself is parameterized with a 
number type, such as Cartesian<double> or Homogeneous 
<leda_integer>. CGAL offers some “families” of concrete models for the 
concept Kernel, based on the Cartesian or Homogeneous representation of 
points [Cd01].  
 
In Cartesian framework, a point is represented by a d-tuple 0 1 -1( ,  ,  ...,  )dc c c , 
and so are vectors in the underlying linear space. Such Cartesian 
coordinates represent each point uniquely.  
 
In Homogeneous framework, a point is represented by a (d+1)-tuple 

0 1( ,   ... )dh h h . Via the formulae /i i dc h h= , the corresponding point with 
Cartesian coordinates 0 1 -1( ,  ,  ...,  )dc c c  can be computed. Note that, the 
homogeneous representation of a point is not unique; multiplication of the 
homogeneous representation vector with any 0λ ≠  gives the representation 
of same point.  
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The interface of the kernel objects is designed such that it works well with 
both Cartesian and homogeneous representation. For example, points in 2D 
have a constructor with three arguments as well (the three homogeneous 
coordinates of the point). The common interfaces parameterized with a 
kernel class allow one to develop code independent of the chosen 
representation. Here said ``families'' of models, because both families are 
parameterized too. A user can choose the number type used to represent the 
coordinates. 
 
A kernel class provides two type-names for number types, namely 
Kernel::FT and Kernel::RT. The type Kernel::FT must fulfill the 
requirements on what is called a FieldNumberType in CGAL. This roughly 
means that Kernel::FT is a type for which operations [+,-,*, /] are 
defined with semantics (approximately) corresponding to those of a field in a 
mathematical sense. The requirements on the type Kernel::RT are 
weaker. This type must fulfill the requirements on what is called a 
RingNumberType in CGAL. This roughly means that Kernel::RT is a type 
for which operations [+,-,*] are defined with semantics (approximately) 
corresponding to those of a ring in a mathematical sense.  
 
Furthermore, there is also a type namely EuclideanRingNumberType, 
which supports the operations +, - and * as well as a function div, which 
performs an integer division, the modulus operator %, that returns the 
remainder of integer division and the function gcd.  
 
With Cartesian <FieldNumberType> you can choose a Cartesian 
representation of coordinates. A number type used with the Cartesian 
representation class should be a FieldNumberType as described above. 
With Homogeneous <RingNumberType> you can choose a homogeneous 
representation for the coordinates of the kernel objects. Since the 
homogeneous representation does not use divisions, the number type 
associated with a homogeneous representation class must be a model for the 
weaker concept RingNumberType only. All number types supported in 
CGAL for these kernel concepts are summarized in Table 2.4 : 
 

 
Built-in  External CGAL Provided 

CORE::Expr 
CGAL::Gmpz 
CGAL::Gmpq 

float 
double 
int 

leda_integer 
leda_real 
leda_bigfloat 
leda_rational 

CGAL::MP_Float 
CGAL::Fixed_precision_nt 
CGAL::Interval_nt 
CGAL::Interval_nt_advanced 
CGAL::Lazy_exact_nt<NT> 
CGAL::Filtered_exact<NT1,NT2> 
CGAL::Quotient<NT> 

 
Table 2.4 Supported Number Types 
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The built-in number types float and double have the required arithmetic 
and comparison operators. They lack some required routines though which 
are automatically included by CGAL. Note that, strictly speaking, the built-
in type int does not fulfil the requirements on a field type, since integers 
correspond to elements of a ring rather than a field, especially operation / is 
not the inverse of *. With floating point arithmetic, round-off errors may 
cause the answer of the check to be false. With the built-in integer types 
overflow might occur. CGAL support library provides defined numbers in 
different libraries such as CORE, GMP or LEDA.  
 
CGAL provides several number types that can be used for exact 
computation. As instance, an object of the class Gmpz is an arbitrary 
precision integer based on the GNU Multiple Precision Arithmetic Library. 
Necessary libraries should be already installed before using these number 
types. This external number types provides exact computations or exact 
predicates. The number type MP_Float that is able to represent multi-
precision floating point values. There is two number types for using interval 
arithmetic: Interval_nt and Interval_nt_advanced.  
 
Furthermore, CGAL defines some special kernel concepts. The principials of 
these concepts are introduced in chapter 2.4. Briefly, these number types 
help in doing filtering of predicates. Fixed_precision_nt that provides 
24-bit numbers in fixed point representation. This number type provides 
some specialized predicates that are exact and efficient for numbers known 
to be representable using 24 bits. Quotient<NT> maintains numbers as 
quotients, i.e., a numerator and a denominator. It can be used to create a 
number type that behaves like a rational number. For example, when used 
in conjunction with the number type MP_Float that is able to represent 
multi-precision floating point values, you achieve an exact rational number 
representation.  
 
An object of the class Lazy_exact_nt<NT> is able to represent any number 
which NT is able to represent. The idea is that Lazy_exact_nt<NT> works 
exactly like NT, except that it is faster because it tries to only compute an 
approximation of the value, and only refers to NT when needed. The goal is 
to speed up exact computations done by any exact but slow number type NT. 
Filtered_exact<NT1,NT2> is other filtering solution, which has two 
arguments for number types. NT1 denotes the construction and storage 
type. NT2 type must be able to compute exactly the operations involved in 
the predicates called. As a general rule, CGAL advise the use of 
Filtered_exact<double, leda_real>.  Following code part shows an 
example how can be together used these kernel concepts. All of necessary 
header files should be included before for necessary kernel representation. 
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#include <CGAL/Cartesian.h> 
#include <CGAL/MP_Float.h> 
#include <CGAL/Lazy_exact_nt.h> 
#include <CGAL/Quotient.h> 
 
typedef CGAL::Lazy_exact_nt<CGAL::Quotient<CGAL::MP_Float> > NT; 
typedef CGAL::Cartesian<NT> K; 
  
 
It is depend on model of geometric computation which kernel you should 
use.  If it is crucial for you that the computation is reliable, the right choice 
is probably a number type that guarantees exact computation. Additionally, 
for the user's convenience, CGAL has generally useful 3 predefined kernels. 
They are all Cartesian kernels; support constructions of points from double 
Cartesian coordinates, all provide exact geometric predicates. They handle 
geometric constructions differently [Cd01]. 
 

• Exact_predicates_exact_constructions_kernel 
• Exact_predicates_exact_constructions_kernel_with_sqrt 
• Exact_predicates_inexact_constructions_kernel  

 
Note that, second one supports the square root operation exactly but it 
requires CORE or LEDA installed. Third one here provides exact geometric 
predicates but inexact geometric constructions for time-efficiency. 
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2.8 Polyhedral Structures 

To applying Boolean set operations on 3D solid objects, we use two different 
parts of algorithm library, which are named in CGAL as 3D-Polyhedral 
Surfaces and 3D-Nef Polyhedron. The algorithms described in this parts of 
library, are based on the related mathematical concepts of field solid 
modelling. Solid modelling is a branch of geometric modelling that 
emphasizes the general applicability of models, and insists on creating only 
complete representations of physical solid objects, i.e. representations that 
are adequate for answering arbitrary geometric questions with algorithms.  
 
In this section first, we want to clarify the terms and definitions, which exist 
in the relevant sections of CGAL documentation. These explanations are 
summarized from different books at the start of this study. We want to 
introduce here basic principals that are focused to Nef-Polyhedra, with the 
terminology of branch solid modelling. 

2.8.1 Related Topics 

2.8.1.1 Topological Foundations 

We can represent a solid unambiguously by describing its surface and 
topologically orienting it such that we can tell, at each surface point, on 
which side the solid interior lies. This description has two parts. A 
topological description specifies vertices, edges, and faces abstractly, and 
indicates their incidences and adjacencies. And the geometric description 
specifies, for example, the equations of the surfaces of which the faces are a 
subset [B04].  

 
 

Fig. 2.12 Spaces [B09]. 
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A space is a set of points. We make this notion slightly richer with the 
addition of topology. We think of topology as the knowledge of the 
connectivity of a space: Each point in the space knows which points are near 
it, that is, in its neighbourhood. In other words, we know how the space is 
connected. We call such a space a topological space. The defined certain 
subsets of this space are associated to the points of the space as their 
neighbourhoods [B09]. A metric space has an associated metric, which 
enables us to measure distances between points in that space and, in turn, 
implicitly define their neighbourhoods. Depending upon which axioms these 
neighbourhoods satisfy, one distinguishes between different types of 
topological spaces. The most important among them are the so called 
Hausdorff spaces and well-known Hausdorff axioms9 [B10]. 
 
Topology not concerned the forms of shapes. Two topological spaces are 
homeomorphic to each other or topologically equivalent if there is a 
homeomorphism between them. Following surfaces in Fig.2.15 are 
topologically equivalent. The surface of a tetrahedron is a triangulation of a 
sphere, as its underlying space is homeomorphic to the sphere.  

 
Consequently, the most general mathematical abstraction of a real solid 
object is a subset of Euclidian space E3, which a suitable idealization of the 
real space our real objects lie in. Characterization of local space around 
geometric primitives, a.i points is consequent for computational geometry. 
This point of view leads us to using the languages of point-set topology and 
algebraic topology respectively. The advantage of the point set idealization 
of real objects is that we can use concepts of point set topology to 
characterize rigorously the desired properties of 3D-objects [B07]. After this 
informal overview, please see the following definition from [B07]: 

                                                 
9 This axioms are following: 
• To each point x there correspond at least one neighbourhood U(x) ; each neighbourhood U(x) contains the point x. 
• If U(x), V(x) are two neighbourhoods of the same point x, then there exist a neighbourhood W(x), which is subset of 

both. 
• If the point y lies in  U(x), there exist a neighbourhood U(y) , which is a subset of U(x) . 
• For two distinct point x, y  there exist two neighbourhoods U(x) ,U(y) without common points. 

 
Fig.  2.13 Homeomorphic surfaces. 
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Definition: A solid is a bounded, closed subset of E3. 
 
The words open and closed are used in a very deliberate manner, reflecting a 
more general concept about to be defined for all n\ . Intuitively, an open set 
is a set does not contain its boundary; an closed set is one that does contain 
its boundary. Boundary, Interior and closure are also topological properties 
of sets. Following definition obtained from [B09]:  
 
Definition : Let X  be a topological space and A X⊆ . The interior of A, 
denoted int( )A  the union of all open sets contained in A. The closure of A, 
denoted cl( )A  is the intersection of all closed sets containing A. The 
boundary of A, denoted cl( ) int( )A A A∂ = − . 

A boundary model partition the 3 dimensional space into three regions that 
we may call the interior, the surface, and the exterior, respectively.  Interior 
of solid is a subset of points that bounded by a closed surface around it. The 
boundary may be attached either to the interior or to the exterior but not to 
both. The subset that has the boundary attached to it is called a closed 
subset. The complement of this subset is called an open subset. The 

 
Fig. 2.14 A X⊆ and related sets [B09]. 

 

Fig. 2.15 Boundary model. 
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boundary is distinguished from the interior and the exterior in that each 
point of the boundary has no neighborhood that is completely contained in 
the interior or the exterior [B04, Wr16].  

2.8.1.2 2-Manifold Surfaces 

The boundary of a solid must satisfy some conditions so that the resulting 
solid is well-behaved. This is the so-called manifold condition. A large 
segment of the literature requires that the surface represented by a 
boundary representation be a closed, oriented 2-manifold embedded in 3 
dimensional spaces [B04]. This condition defined as follows, in the book of 
Mäntylä [B07] which was the one of the first bibles of branch solid 
modelling: 
 
Definition: A 2-Manifold M is a topological space where every point has a 
neighbourhood topologically equivalent to an open disk of E2. 
 
We have been searched quite a lot, to find a simple way to explain, this more 
important condition of branch solid modelling, in related literature. 
Fortunately, we have been found in a web-site [Wr15] an explanation about 
it rather more practically but also definitive. Understanding of manifold 
condition was relative important for our implementation.  
 
This manifold condition can be explained more easily with the help of the 
definition of Open ball. To describe the openness/closeness is a general 
definition which can be interpreted for different dimensions. This definition 
and following example obtained from [B08]. 
 
Definition : Let np∈\  be a point, and let r>0 be a number. The open ball 
in n\ of radius r centered at p is the set of points { }( , ) |n n

rO p q q p r= ∈ − <\ \ , 
and closed ball in n\ of radius r centered at p is the set of points 

{ }( , ) |n n
rO p q q p r= ∈ − ≤\ \ . More generally, open ball in any subset nA⊂ \  is 

set of points ( , ) ( , )n
r rO p A O p A= ∩\  and defined by 

{ }( , ) |    rO p A q A q p r= ∈ − <  
 
 
Example: Let 2A⊂ \  be 
the square [0,4] [0,4]× . 
Some open discs and a 
closed disc are illustrated 
in figure 2.16. 
  

Fig. 2.16 Open and closed discs. 
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A surface is a 2-manifold if and only if for each point x on the surface there 
exists an open ball with centre x and sufficiently small radius so that the 
intersection of this ball and the surface can be continuously deformed to an 
open disk. By continuously deformed, it means under affine transformations 
such as rotate, scale or bend but not cutting or gluing [Wr15]. 
 
In the figure 2.17, first one is a 2-manifold surface, since the intersection of 
the open balls with cube somewhere on the face, edge and vertices is open 
disks. Some of them bended open disks. However, they are equivalent to 
open disks. The next figure on the right shows a solid whose bounding 
surface is not a manifold. The intersections of the open ball and the surface 
of the solid is the union of two intersecting open disks. These intersections 
cannot be deformed to an open disk without "gluing." Consequently, the 
surface is not a manifold [Wr15]. 

Simplexes give a computer realizable model for solid boundaries. The basic 
building blocks are simplexes of various dimensions that are put together in 
particular ways to obtain manifolds. Point, line segment, triangle and 
tetrahedron are low dimensional examples of simplexes (Fig 2.18). We use 
convex combinations of points to define simplexes in general dimensions. 
One could also define a simplex as the smallest closed convex set which 
contains the given vertices. More details and formal definitions discussed in 
[B04, B10].   

 
Fig. 2.17 A 2-manifold surface (left) and a surface with non-manifold 

boundaries (right). 

 
Fig. 2.18 Low-dimensional simplices. 
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Since the face definition of a simplex described also with simplexes 
recursively, simplexes is well-defined theory for a computer realization. The 
following definition is obtained from the book of Hoffman [B04]: 
 
Definition: A d-simplex S is the convex combination of d+1 affinely 
independent point, and dim( )S d= . The boundary of a d-simplex S, consist 
of all (d-k)-simplices contained in S, where k > 0 , and is denoted S∂ . Every 
simplex in the boundary of S is a face of S.  A k-simplex that is a face also 
called k-face. 
 
Clearly, 0-simplex is a point and a 3-simplex is a tetrahedron. A 2-simplex 
(triangle) has three 1-face (edges), also has three 0-face (vertices).  
 
In addition, an oriented simplex is a simplex with a particular sense of 
rotation or with a particular ordering of its vertices; at the same time, no 
distinction is made between orderings which differ 
from one another by an even permutation, so that 

0 1 2( ),v v v 1 2 0( ),v v v 2 0 1( )v v v  represent one orientation, and 
0 2 1( ),v v v 1 0 2( ),v v v 2 1 0( )v v v  represent the other orientation of 

the 2-simplex whose has the vertices (0-faces) 
0 1 2,   v v and v [B10]. In small figure, an oriented 3-simplex 

is illustrated which has three oriented(counter-
clockwise)  2-faces. 
 
In conclusion, a manifold surface has the property that, around every one of 
its points, there exist a neighbourhood that is homeomorphic to the plane. In 
addition, a manifold surface is orientable if we can distinguish two different 
sides. Closed, orientable manifolds partition the space into three regions 
that may call the interior, the surface, and the exterior. Manifold properties 
give us a solid classification in boundary models, and also important to 
testing the validity of the solid boundaries topologically [B04]. 

2.8.1.3 Solid Representations 

We want to give also some details about two major solid representation 
schemes which is also related with our study. These are named Constructive 
Solid Geometry (CSG) and Boundary Representation (B-Rep).  
 
In CSG a solid is represented as a set-theoretic boolean combination of 
primitive solid objects, such as blocks, prisms, cylinders, or toruses. The 
boolean operations are not evaluated, instead, objects are represented 
implicitly with a tree structure; leaves represent primitive objects and 
interior nodes represent boolean operations and transformations. 
Algorithms on such a CSG-tree first evaluate properties on the primitive 
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objects and propagate the results using the tree structure [Cd01]. This 
representation is illustrated on the left side of Fig.2.19.  

A B-rep (Boundary representation) describes the incidence structure and the 
geometric properties of all lower-dimensional features of the boundary of a 
solid. Surfaces are oriented to decide between the interior and exterior of a 
solid [B04]. Boundary models represent a solid indirectly through 
representation of its bounding surface. Right side of the Figure 2.19 
illustrates the basic components of a boundary model [B07]. In the figure, 
the surface of the object is divided into an enclosing set of faces (a), each of 
which is represented in terms of its bounding polygon (b), in turn 
represented in terms of edges and vertices (c). To storing a solid which is 
represented with B-rep, there are many solutions in literature. One of them 
is Halfedge Data Structure (HDS).  

 
HDS is an edge-centered data structure which is capable of maintaining 
incidence informations of vertices, edges and faces. An edge centered model 
(Fig.2.20) represents a face boundary in terms of a closing sequence of edges 
[B07]. HDS used also in CGAL to storing planar maps, polyhedra, or other 
orientable, two-dimensional surfaces embedded in arbitrary dimension. 
HDS is defined as follows: Each edge is decomposed into two halfedges with 

Fig. 2.19 Solid representations. 

 
Fig .2.20 An edge centered model. 
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opposite orientations, since faces have shared edges. One incident face and 
one incident vertex are stored in each halfedge. For each face and each 
vertex, one incident halfedge is stored. This data structure is a variation of 
the full winged-edge data structure. Briefly, is a five-level hierarchic data 
structure, consisting of nodes of type Solid, Face, Loop, Halfedge, and 
Vertex. Node Solid forms the root node of an instance of the HDS. The solid 
node gives access to to faces, edges and vertices of the model through 
pointers. Face represents one planar face of the polyhedron. Node loop 
describes one connected boundary of a face. Node Halfedge describes one 
line segment of a loop. And node vertex contains a vector of some numbers 
that represent a point of E3. Each node handled as doubly-linked lists 
internally and has also some pointers to parent nodes and child nodes. 
Hierarchic view of the HDS illustrated in Fig.2.21 and more details 
discussed in [B07 and Cp08]. 

In conclusion, in solid modelling, two major representation schemes are 
used: CSG and B-rep. The class of represent able objects in a CSG is usually 
limited by the choice of the primitive solids. A B-rep is usually limited by the 
choice for the geometry of the supporting curves for edges and the 
supporting surfaces for surface patches, and, in addition, the connectivity 
structure that is allowed. They can be represented and manipulated 
efficiently, the data structures are compact in storage size, and many 
algorithms are simple. In addition, a B-rep is not always closed under 
Boolean set operations [Cd01]. Both have inherent strengths and 
weaknesses, are discussed in [B04] with more details. In consequence, there 
is a discernible tendency to combine both CSG and B-rep in an effort to take 
advantage of the different strong points afforded by each [B04]. Such 
modellers are called dual-representation modellers. NEF-Polyhedra are a 
good example for this kind of modeller. It evaluates a CSG-tree with 
halfspaces as primitives and converts it into a B-rep representation.  

2.8.1.4 Halfspace Intersections 

An unbounded straight line or plane curve divides the two dimensional 
space into two semi-infinite regions, called half-spaces. Similarly, an 
unbounded plane or surface divides the three dimensional space into two 

 
Fig. 2.21 Hierarchic view of half-edge data structure. 
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semi-infinite regions. These are also called half-spaces. We can combine 
half-spaces using the set theoretic union, intersection and difference 
operators to create geometric models of two and three dimensional shapes 
[B11].  
 
All constructive models consider solids as point set of E3. Their basic idea is 
to start from sufficiently simple point sets that can be represented directly, 
and model other point sets in terms of very general combinations of the 
simple sets. So called halfspace-models apply this approach in a direct 
fashion [B07].  
 
Every point set A can be thought of as having a characteristic function 

: {0,1}Am P → which tells whether a point p P∈  is considered to be a member 
of A or not. For every general point set characteristic functions do not offer 
much help, because their representation would be as hard as the 
representation of the sets themselves. However, for an interesting class of 
point sets Am  can be represented in terms of real valued analytic function 
h(p) defined everywhere in 3E  [B07].  
 

 
In this case, for a half space bounded by a straight line, let ( , )h x y ax by c= + + , 
where h denotes a half space. For a halfspace bounded by a plane we can 
use the equation ( , , )h x y z ax by cz d= + + + . Any combination that satisfies the 
equation so that 0h =  is on the line, the boundary of the half-space. Other 
values of x and y produce an inequality, either 0h >  or 0h < , geometrically 
means inside or outside of halfspace.  To reverse inside/outside classification 
we can change the sign of h . One general principle for these techniques is: 
Preserve dimensional homogeneity. You should not mix two and three 
dimensional half-spaces [B11]. 

 
 

 Fig. 2.22 Two and three dimensional bounded halfspaces.. 
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Half spaces can combine to form complex shapes that are closed and 
bounded. To do this use Boolean operators, principally the intersect 
operator. When H denotes a combination of two or more halfspaces then 
express the intersection of these halfspaces as  

1

n

i
i

H h
=

=∩  

 
Note that H is not necessarily a closed finite region. We can use union, 
difference and complement operator to combine different intersections. 
When B denotes a boundary of a solid form we can combine different closed 
forms as 

1 1

m n

ij
i i

B h
= =

=∪ ∩  

 
And the following conditions present the possible point classifications with 
respect to intersection of halfspaces [B11]. 
 

1. If and only if a point inside all hi , then inside H. 
2. If and only if a point is outside at least one hi , then it is outside H. 
3. If and only if a point is on the boundary of at least one hi , and inside 

the remaining hi , then it is on the boundary of H. 

2.8.1.5 Regularized Set Operations 

Some Boolean set operations on solids can give “parasitic” results. Consider, 
for instance the case depicted in figure 2.24. The intersection of the two 
objects consists of a rectangular object plus a “dangling” line segment.  

 
Fig. 2.23 Halfspace intersections. 
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To eliminate these lower dimensional branches, the three set operations are 
regularized as follows [Wr15].  
 
• Compute the result as usual and lower dimensional components many be 

generated.  
• Compute the interior of the result. This step removes all lower 

dimensional components.  The result is a solid without its boundary.  
• Compute the closure of the result obtained in the above step. This adds the 

boundary back. 

 
Following definition is obtained also from book of Mäntylä [B07]: 
 
Definition: The regularized set operations union*, intersection*, and set 
difference*, denoted by * * *, and∪ ∩ −  defined as 
 

* * * (int( ))       (int( ))        (int( ))A B cl A B A B cl A B A B cl A B∪ = ∪ ∩ = ∩ − = −  
 
Where , and∪ ∩ − denote the usual set operations. 

 
 

Fig 2.24 Parasitic result of a non-regular set operation. 
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2.8.2 3D-Polyhedral Surfaces 

Polyhedral surfaces in three dimensions are a part of CGAL algorithms 
library. A boundary representation of a polyhedral surface consists of a set 
of vertices V, a set of edges E, a set of facets F, and an incidence relation on 
them. The organization beneath is a halfedge data structure, which restricts 
the class of represent able surfaces to orientable 2-manifolds - with and 
without boundary. If the surface is closed, it is called as polyhedron [Cd01]. 
Topology and Geometry is separated in the design of the polyhedral 
surfaces. Figure 2.25 shows the design of this surface library [Cp08]. 

The two types of boundary representations are 2-manifold and non-
manifold Surfaces. The next distinction is between orientable and non-
orientable 2-manifold surfaces. Without going into details, a surface is 
orientable if a consistent orientation can be assigned to each facet such that 
for each edge the two incident facets have opposite orientations at this edge. 
CGAL provide only orientable 2-manifolds with this part of library. 
 
Vertices, halfedges and facets store both topology and geometry. The 
container class Halfedge_data_structure manages these three items 
and their topological relations. The Topological_map adds to the halfedge 
data structure the management for holes in facets, which enumerates inner 
and outer boundaries for facets. The Polyhedron adds geometric operations 
to the Halfedge_data_structure. It is based on the definition of oriented 
polyhedral complex for polyhedral surfaces and guarantees a consistent 
representation. The Planar_map is based on the topological map, since it 
maintains holes in facets [Cd01, Cp08].  

 
Fig.2.25 The design of 3D-Polyhedral surfaces in three dimensions [Cp08]. 
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The definition for polyhedral surfaces obtained from Steinitz10. This 
definition is of combinatorial nature, which makes reasoning about the data 
structure more convenient, for example that the same facet cannot appear 
on both sides of an edge. And it leads directly to the integrity definition and 
related test function of the polyhedral surface data structure [Cp08].  
 
Definition:  A structural complex is a union C V E F= ∪ ∪ of three disjoint 
sets together with an incidence relation. We call V the vertices, E the edges 
and F the facets of the structural complex. The incidence relation on C must 
be symmetric. No two elements from the same set V , E or F are incident. If 
v V∈ is incident to e E∈  and e is incident to f F∈  then v is incident to f. 
 
Definition: A polyhedral complex is a structural complex with four 
additional conditions. 

(1) Every edge is incident to two vertices. 
(2) Every edge is incident to two facets. 
(3) For every incident pair v, f there are exactly two edges incident to both. 
(4) Every vertex and every facet is incident to at least one other element. 

 
The neighbourhood of a vertex is the edges and facets incident to the vertex. 
If the incidence relation is restricted to this neighbourhood, then by 
condition (3) each facet is incident to exactly two edges, and by condition (2) 
each edge is incident to exactly two facets. Thus, the neighbourhood 
decomposes into disjoint cycles, where each cycle is an alternating sequence 
of edges and facets. A polyhedral complex is a 2-manifold if and only if the 
neighbourhood of each vertex decomposes into a single cycle. The definition 
of a polyhedral complex is symmetric for vertices and facets. A 
symmetrically defined neighbourhood of a facet decomposes into cycles of 
incident edges and vertices. Assuming that the neighbourhood of each facet 
is a single cycle (geometrically, the boundary of the facet is a single 
connected component so the facet has no holes), we can define a polyhedral 
complex to be oriented if each cycle around a facet is oriented and if, for 
each edge, the two cycles of its two incident facets are oriented in opposite 
directions. A polyhedral complex is orientable if there is such an orientation 
[Cp08]. 
 
The surface defined by such a boundary representation is an orientable 2-
manifold. Some useful properties are for example that the neighborhoods of 
two vertices have at most one edge and two facets in common, the edge and 
vertex graphs are connected within each connected component of the surface 
and each facet has at least three edges on its boundary [Cp08].  

                                                 
10 E.Steinitz and H.Rademacher, Vorlesung über die Theorie der Polyeder unter Einschluß der Elemente der 
Topologie. Springer, 1934 
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The class CGAL::Polyhedron_3<Traits> can represent polyhedral 
surfaces in three dimensions as well as polyhedra. The polyhedral surface is 
realized as a container class that manages vertices, halfedges, facets with 
their incidences, and that maintains the combinatorial integrity of them. It 
is based on the flexible design of the halfedge data structure.  Vertices 
represent points in 3d-space. Edges are straight line segments between two 
endpoints. Facets are planar polygons without holes defined by the circular 
sequence of halfedges along their boundary. The polyhedral surface itself 
can have holes. The halfedges along the boundary of a hole are called 
border halfedges and have no incident facet. An edge is a border edge if 
one of its halfedges is a border halfedge. A surface is closed if it contains no 
border halfedges. A closed surface is a boundary representation for 
polyhedra in three dimensions. The smallest representable surface with 
CGAL::Polyhedron_3<Traits> is a triangle (for polyhedral surfaces with 
border edges) or a tetrahedron (for polyhedra). 

 
The convention is that the halfedges are oriented counter-clockwise around 
facets as seen from the outside of the polyhedron. The notion of the solid side 
of a facet as defined by the halfedge orientation extends to polyhedral 
surfaces with border edges although they do not define a closed object. If 
normal vectors are considered for the facets, normals point outwards as 
shown on the right side of Fig.2.26. 
 
Since formal definition and details of all properties of this class can be found 
in CGAL documentation, we want to give a more practical overview, which 
is focused to our implementation. The full template declaration of 
Polyhedron_3<Traits> states four template parameters:  
 
 
template <   class PolyhedronTraits_3,   

 
Fig. 2.26 Incidence relations of a halfedge (left)  and facet orientations of a 

polyhedral surface (right). 
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   class PolyhedronItems_3 = CGAL::Polyhedron_items_3,   
   template < class T, class I>  
                   class HalfedgeDS = CGAL::HalfedgeDS_default,   
   class Alloc = CGAL_ALLOCATOR(int)>   
class Polyhedron_3;   
 

 
The first parameter requires a model of the PolyhedronTraits_3 concept 
as argument, for example CGAL::Polyhedron_traits_3. As discussed in 
previous sections, it is also possible to use a kernel representation as a traits 
class. The second parameter expects a model of the PolyhedronItems_3 
concept. By default, the class CGAL::Polyhedron_items_3 is selected. 
This class provides definitions for vertices with points, half-edges, and faces 
with plane equations. The third parameter is a class template. A model of 
the HalfedgeDS concept is expected. By default, the class 
CGAL::HalfedgeDS_default is selected, which is a list based 
implementation of the half-edge data structure. The fourth parameter 
Alloc requires a standard allocator for STL container classes. These 
arguments make possible to describe more specific implementations based 
on this class. In our implementation we work with default trait classes, 
more details about these arguments can be found in [Cd01]. 
 
Following example instantiate a Polyhedron_3<Traits> using a kernel as 
traits class. It creates a tetrahedron and stores the reference to one of its 
halfedges in a Halfedge_handle. The example continues with a test if the 
halfedge actually refers to a tetrahedron. This test checks the connected 
component referred to by the halfedge h and not the polyhedral surface as a 
whole. This example works only on the combinatorial level of a polyhedral 
surface. 
 
 
 
#include <CGAL/Cartesian.h> 
#include <CGAL/Polyhedron_3.h> 
 
typedef CGAL::Cartesian<double>       Kernel; 
typedef CGAL::Polyhedron_3<Kernel>         Polyhedron; 
typedef Polyhedron::Halfedge_handle        Halfedge_handle; 
 
int main() { 
 
    Polyhedron P; 
 
    Halfedge_handle h = P.make_tetrahedron(); 
    if ( P.is_tetrahedron(h)) 
        return 0; 
 
    return 1; 
} 
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Following example adds the geometry. Four points are passed as arguments 
to the construction. This example demonstrates in addition the use of the 
vertex iterator and the access to the point in the vertices.  
 
 
#include <CGAL/Cartesian.h> 
#include <CGAL/Polyhedron_3.h> 
#include <iostream> 
 
typedef CGAL::Cartesian<double>       Kernel; 
typedef Kernel::Point_3                    Point_3; 
typedef CGAL::Polyhedron_3<Kernel>         Polyhedron; 
typedef Polyhedron::Vertex_iterator        Vertex_iterator; 
 
int main() { 
 
    Point_3 p( 1.0, 0.0, 0.0); 
    Point_3 q( 0.0, 1.0, 0.0); 
    Point_3 r( 0.0, 0.0, 1.0); 
    Point_3 s( 0.0, 0.0, 0.0); 
 
    Polyhedron P; 
    P.make_tetrahedron( p, q, r, s); 
 
    CGAL::set_ascii_mode( std::cout); 
 
    for ( Vertex_iterator v = P.vertices_begin(); v != P.vertices_end(); ++v) 
        std::cout << v->point() << std::endl; 
     
    return 0; 
} 
 

 
Note the natural access notation v->point(). Similarly, all information 
stored in a vertex, halfedge, and facet can be accessed with a member 
function given a handle or iterator. For example, given a halfedge handle h 
we can write h->next() to get a halfedge handle to the next halfedge, h-
>opposite() for the opposite halfedge, h->vertex() for the incident 
vertex at the tip of h, and so on. This operator can be used also 
simultaneously for incidences. 
 
 
 cout << Plane_3( h->vertex()->point(), 
                  h->next()->vertex()->point(), 
                  h->next()->next()->vertex()->point()); 
 

 
The Polyhedron_3 offers also a point iterator for convenience. The for-loop 
in the example above can be simplified to a single statement by using 
std::copy and the ostream-iterator adaptor. 
 
 
std::copy( P.points_begin(), P.points_end(),  
           std::ostream_iterator<Point_3>(std::cout,"\n")); 
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The class Polyhedron_3<Traits> describes following items for 
manipulating HDS: 
 
Handles Iterators Access 
Vertex_handle   
Halfedge_handle 
Facet_handle   

Vertex_iterator   
Halfedge_iterator   
Facet_iterator   
Point_iterator   
Edge_iterator   
Plane_iterator   
 

vertices_begin()… vertices_end() 
halfedges_begin()… halfedges_end() 
facets_begin()… facets_end() 
points_begin()… points_end() 
edges_begin()… edges_end() 
planes_begin()… planes_end() 

 
Additionally, two circulators are described: 
 
Halfedge_around_vertex_circulator circulator of halfedges around a vertex (cw) 
Halfedge_around_facet_circulator circulator of halfedges around a facet (ccw). 

 
Boundary representations of orientable 2-manifolds are closed under Euler 
operations, four of them are shown in Figure 2.27. Euler operations are also 
described by Polyhedron_3 which modify consistently the combinatorial 
structure of the polyhedral surface. The geometry remains unchanged. The 
standard Euler operations [B04] are extended with operations that create or 
close holes in the surface. [Cp08].  These operations are not used in our 
implementation. 

 
To visualize a Polyhedron_3 object is possible with 
CGAL::Geomview_stream. An object of the class Geomview_stream is a 
stream in which geometric objects can be inserted and where geometric 
objects can be extracted from. Using of this stream is discussed in 
implementation chapter. 
 
An auxilary class CGAL::Polyhedron_incremental_builder_3<HDS> 
helps in creating polyhedral surfaces from a list of points followed by a list 
of facets that are represented as indices into the point list. This is 

 
Fig. 2.27 The example results of some Euler operations 
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particularly useful for implementing file reader for common file formats 
such as object file format (OFF).  
 
A modifier mechanism allows accessing the internal representation of the 
polyhedral surface, i.e., the halfedge data structure, in a controlled manner. 
A modifier is basically a callback mechanism using a function object. When 
called, the function object receives the internal halfedge data structure as a 
parameter and can modify it. On return, the polyhedron can check the 
halfedge data structure for validity. Such a modifier object must always 
return with a halfedge data structure that is a valid polyhedral surface. The 

validity check is implemented as an expensive post-condition at the end of 
the delegate() member function, i.e., it is not called by default, only when 
expensive checks are activated. This mechanism illustrated in Fig.2.28. 
 
Modifier_base<R> is an abstract base class from support library 
providing the interface for any modifier. A modifier is a function object 
derived from Modifier_base<R> that implements the pure virtual member 
function operator(), which accepts a single reference parameter R& on 
which the modifier is allowed to work. R is the type of the internal 
representation that is to be modified. 
 
The incremental builder mechanism is used to creating polyhedrons in our 
implementation. Therefore, this class will be explained with details in 
implementation chapter. And details about file formats will be also given in 
same chapter. 

 
Fig. 2.28 Class diagram illustrating the safe access 

 to the internal representation of a polyhedron. 
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2.8.3 3D-Nef Polyhedron 

Partitions of three space into cells are a common theme of solid modelling 
and computational geometry. A set of planes partitions space into cells of 
various dimensions. The theory of Nef polyhedra has been developed for 
arbitrary dimensions. The class CGAL::Nef_polyhedron_3 implements a 
boundary representation for the 3-dimensional case. This class offer a B-rep 
data structure that is closed under boolean operations and with all their 
generality. Starting from halfspaces or directly from oriented 2-manifolds, 
CGAL::Nef_polyhedron_3 can work with set union, set intersection, set 
difference, set complement operations. Set complement changes between 
open and closed halfspaces, The topological operations boundary, interior, 
exterior, closure and regularization are also offered with 
CGAL::Nef_polyhedron_3. This class can model non-manifold solids, 
unbounded solids, and objects comprising parts of different dimensionality 
[Cp09]. 
 
Definition:  A Nef-polyhedron in dimension d is a point set dP ⊆ \ generated 
from a finite number of open halfspaces by set complement and set 
intersection operations.  
 
This definition describes a polyhedron dP ⊂ \  as a set of points generated 
from a finite set of halfspaces by forming complements and intersections. 
Set union, difference and symmetric difference can be reduced to intersection 
and complement since  
 

  (    ),                A B A B A B A B∪ = ¬ ¬ ∩ ¬ − = ∩¬  
 

As discussed in introduction, Walter Nef is developer of this theory. We 
want to give here some definitions from the book of Nef [B03] to clarify this 
definition. The open halfspaces defined more generally in n\  with Nef's 
notations as follows:   
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n
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Here f(x) denoted a linear function. Corresponded closed halfspaces defined 
as follows.  
 

0
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Nef says also in this book, a polyhedra nP ⊆ \ can be described as a function 

1 2 3 4( ) ( )P F F F F+ − − += ∩ ∪ ∩¬  with the arguments 1 2 3 4, , , .F F F F+ − − +  Following 
comments is also summarized from this book: 
  

• Every open halfspaces are polyhedra such as ,F F+ − .  
• Since ( )cl F F+ −= ¬ , closed halfspaces are polyhedra.  
• Since 0 ( ) ( ) ( )F F F cl F cl F+ − + −= ¬ ∪ = ∩ ,  0F  is also a polyhedra.. 
• Since F F+ −∩ =∅ , ∅  is also a polyhedra. 
• Since ( )n = ¬ ∅\ , n\ is also polyhedra. 

 
A related example with the definitions explained above as follows in this 
book:  
 
A polyhedra can construct in 3\  illustrated in Fig 2.27. Here, the cube in figure (1) is 
constructed with the intersection of six halfspaces. Figure (2) constructed with the union of 
the cubes after some rotations. Union of more cubes simultaneously give us an object such as 
Figure (3). And (4) constructed with the difference operation between the figure (2) and (3).  

 
More details about this theory and related proofs can be found in this book 
[B03]. 
 
For Boolean operations on two Nef-Polyhedra (where dimension d>1) CGAL 
represent a polyhedron as a set of pyramids. The computation of the 
complement and of the closure of a polyhedron, as well as the intersection of 
two polyhedra reduced to the application of primitive operations on 
pyramids or on set of pyramids. The union and the difference of two 
polyhedra P1 and P2 described as follows [Cd10]: 
 

1 2 1 2 1 2 1 2( ),   P P P P P P P P∪ = ¬ ¬ ∩¬ − = ∩¬  
 
The definition of a pyramid and local pyramid as follows [Cd10]: 
 

 
Fig.  2.27 Constructed polyhedrons. 
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Definition:  A set Q in d\  is called a cone if there exists a point dx∈\ such 
that ( )Q x Q x+= + −\ ( with { : 0}λ λ+ = ∈ >\ \ ). The point x is then called apex 
of Q. The set of all apices of Q denoted by N(Q). A set Q in dE is called 
pyramid if Q is a polyhedron and a cone. 
 
    Now let dP ⊆ \ be a polyhedron and dx∈\ . There is a neighborhood 0 ( )U x  
of x such that the pyramid : (( ( )) )Q x P U x x+= + ∩ −\  is the same for all 
neighbourhoods 0( ) ( )U x U x⊆ . Q is called the local pyramid of P in x and 
denoted .xP  
 
A face of a Nef polyhedron is defined as an equivalence class of local 
pyramids that are a characterization of the local space around a point. In 
other words, a face s of P is a maximal non-empty subset of d\ such that all 
of its points have the same local pyramid Q denoted sP . This definition of a 
face partitions d\ into faces of different dimension. A face s is either a subset 
of P, or disjoint from P [Cd01]. Following rules and operations about local 
pyramids obtained from [P05]. Here int(), ext(), cl() and ¬  denotes the 
interior, exterior, closure and complement operations respectively: 
 

1 2 1 2 1 2 1 2
x

(1)  , ( )
(2)  int( ) ,  ( )
(3)  ( ) ,  ( )

(4)  ( ) ,  ( ( )) ( ),  (int(P)) int( )

x x

x d x

x x x x x x

x x x x x

x P x P x cl P P
x P P x ext P P
P P P P P P P P

P P cl P cl P P

∈ ⇔ ∈ ∈ ⇔ ≠∅

∈ ⇔ = ∈ ⇔ =∅

∩ = ∩ ∪ = ∪

¬ =¬ = =

\
 

 
 Following example about local pyramids obtained also from [P05]. 

Faces do not have to be connected. There are only two full dimensional d-
faces possible, one whose local pyramid is the space d\  itself and the other 
with the empty set ∅  as a local pyramid. All lower-dimensional faces form 
the boundary of the polyhedron i.e. here called 0-faces vertices and 1-faces 
edges. In the case of polyhedra in space called 2-faces facets and the full-

We denote with S(P) the set of all faces of P. For a face S we introduce : ( ).s xP P x S= ∈  
 
As an example we take a look at the closed (open) unit cubes in a orthogonal coordinate 
system in 3\ . Both cubes have the same 28 faces  ( )S S P∈ , the difference being that all 
faces (except the exterior) are subsets of the closed cube, while (except the interior) they 
are disjoint to the open cube. The faces are: 

       

Nr type of S PS N(PS) dim(S) 
8 vertices closed (open) octants points 0 
12 edges closed (open) quadrants lines 1 
6 facets closed (open) halfspaces planes 2 
1 interior 3\  3\  3 

1 exterior ∅  3\  3 
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dimensional d-faces volumes. Faces are relative open sets, e.g., an edge does 
not contain its end-vertices [Cd01].  
 
We illustrate the definitions with an example in the plane [Cd01]. Given the 
closed halfspaces  

 
1 2 3 4 5:  0,   :  0,   :    3,   :  1,   :  2,   h y h x y h x y h x y h x y≥ − ≥ + ≤ − ≥ + ≤  

 
and we define our polyhedron 

 
1 2 1 2 3 4 5: ( ) ( )P P P h h h h h= − = ∩ ∩ − ∩ . 

 
In Fig.2.28 illustrated P1 and P2. Small arrows show the positive sides of 
halfspaces. The shaded region, bold edges and black nodes part of the 
polyhedrons.  

 
Here P1 has 8 faces in all, 3 vertices (0-faces), 3 edges (1-faces) and 2 full-
dimensional faces. P2 has 5 faces , only one vertices, 2 edges and also 2 full-
dimensional faces.  

 
 

Fig.  2.28 Planar examples of Nef-Polyhedron P1 and P2. 

 
Fig. 2.29  Local Pyramids of P1 and P2. 
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Faces and their local pyramids illustrated in Fig. 2.29. Small circles show 
local pyramids and the numbers on the top-left of circles shows dimensions 
of faces.  
 
In Fig.2.30 (left side) illustrated polyhedron 1 2 1 2P P P P P= − = ∩¬  after 
difference operation. The shaded region, bold edges and black nodes are part 
of the polyhedron, thin edges and white nodes are not. The sketches of the 
local pyramids of P are on the right side of figure. The local pyramids are 
indicated as shaded in the relative neighbourhood in a small disc. 

 
Polyhedron P has a partially open and partially closed boundary, i.e., vertex 

4 5 6, ,v v v  and edges 4 5,e e  are not part of P. The local pyramids for the faces are 
1fP =∅  and 2 2fP = \ . Examples for the local pyramids of edges are the closed 

halfspace 2h for the edge 1e , 1
2

eP h= , and the open halfspace that is the 4h¬  
for the edge 5e , 5 { ( , ) | 1 }eP x y x y= − < . The edge 3e consist actually of two 
disconnected parts, both with the same local pyramid 3

1
eP h= . In data 

structure, two connected components of the edge 3e will represent separately 
[Cd01]. 
 
The local pyramids of each 
vertex are represented by 
conceptually intersecting the 
local neighborhood with a 
small ε -sphere. This 
intersection forms a planar 
map on the sphere (see the 
Fig.2.31), which together 
with the set-selection mark 
for each item (i.e. vertices, 

 
Fig.  2.30 The Nef Polyhedron P and sketches of local pyramids. 

 
 

Fig.  2.31 Representation of vertices as Local pyramids. 
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edges, loops and faces) forms a 2D Nef polyhedron embedded in the sphere 
[Cd01]. See Chapter 13 in [Cd01] for further details. This is another part of 
library named CGAL::Nef_polyhedron_S2 which out of our goals.  
 
CGAL::Nef_polyhedron_3 evaluates a CSG-tree with halfspaces as 
primitives and convert it into a B-rep representation. In fact, it works with 
two data structures; one that represents the local neighborhoods of vertices, 
which is in itself already a complete description and a data structure that 
connects these neighborhoods up to a global data structure with edges, 
facets, and volumes.  CGAL::Nef_polyhedron_3 has a complex data 
structure to store Nef polyhedrons. Having sphere maps for all vertices of a 
polyhedron is a sufficient but not easily accessible representation of the 
polyhedron. CGAL 
enrich the data 
structure with 
more explicit 
representations of 
all the faces and 
incidences between 
them [Cd01]. More 
examples about 
using this complex 
data structure can 
be found in CGAL 
documentation, 
which is not really 
used in our 
implementation. 
But we want to 
give an term and 
interface overview, since it is a relevant part to achieve Nef Polyhedron 
structurally. This data structure and defined terms illustrated in Fig.2.32. 
This data structure represents the connected components of a face 
individually and explanations of the terms defined as follows [Cd01]: 
 
edges: Here stored two oppositely oriented edges for each edge and have a pointer from one 
oriented edge to its opposite edge. Such an oriented edge can be identified with an svertex in 
a sphere map; it remains to link one svertex with the corresponding opposite svertex in the 
other sphere map.  
 
edge uses: An edge can have many incident facets (non-manifold situation). Therefore here 
introduced two oppositely oriented edge-uses for each incident facet; one for each orientation 
of the facet. An edge-use points to its corresponding oriented edge and to its oriented facet. 
An edge-use can identify with an oriented sedge in the sphere map, or, in the special case 
also with an sloop. Without mentioning it explicitly in the remainder, all references to sedge 
can also refer to sloop.  

 
Fig. 2.32 Representation of Nef Polyhedron data 

structure. 
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facets: Here stored oriented facets as boundary cycles of oriented edge-uses. Facets have a 
distinguished outer boundary cycle and several (or maybe none) inner boundary cycles 
representing holes in the facet. Boundary cycles are linked in one direction. Other traversal 
direction is accessible when we switch to the oppositely oriented facet, i.e., by using the 
opposite edge-use.  
 
shells:  The volume boundary decomposes into different connected components, the shells. 
A shell consists of a connected set of facets, edges, and vertices incident to this volume. 
Facets around an edge form a radial order that is captured in the radial order of sedges 
around an svertex in the sphere map. Using this information, we can trace a shell from one 
entry element with a graph search.  
 
volumes: A volume is defined by a set of shells, one outer shell containing the volume and 
several (or maybe none) inner shells separating voids which are excluded from the volume. 
 
CGAL offer a rich interface to investigate these data structures, their 
different elements and their connectivity. With this complex provided also 
affine (rigid) transformations and a point location query operation. 
Nef_polyhedron_3 have a custom file format (NEF3) for storing and 
reading Nef polyhedra from files. Note that, this file format not documented 
now. They offer a simple OpenGL-based visualizer for debugging and 
illustrations [Cd01]. These techniques will be explained in implementation 
chapter with more details. 
 
In addition, we call a Nef polyhedron bounded if its boundary finite, and 
unbounded otherwise. In order to handle unbounded Nef polyhedra 
conceptually in the same way as which handle bounded Nef polyhedra, 
CGAL use a special technique 
(Infimaximal Frames) that 
discussed in [Cp11] with all 
details. This technique intersect 
polyhedra with a bounding 
cubical volume of size 3[ , ]R R− , 
where R is a symbolical 
unspecified value, which is finite 
but larger than all coordinate 
values that may occur in the 
bounded part of the polyhedron. 
As a result, each Nef polyhedron 
becomes bounded. The boundary 
of the bounding volume called the 
infimaximal box. We clip lines 
and rays at the infimaximal box. 
The intersection points with the 
infimaximal box are called non-
standard points, which are points Fig. 2.33 Infimaximal Box and non-

standart points. 
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whose coordinates are -R or R in at least one dimension, and linear 
functions f(R) for the other dimensions. Such extended points (and developed 
from there also extended segments etc) are provided in CGAL with extended 
kernels, namely CGAL::Extended_cartesian and CGAL::Extended_ 
homogeneous. They are regular CGAL kernels with a polynomial type as 
coordinate number type. Fig. 2.33 shows a complicated Nef polyhedron 
consisting of diverse faces and low dimensional features. All vertices are 
embedded via extended points. All points on the square boundary 
(infimaximal box) are non-standard points [Cp11, Cd01]. As long as an 
extended kernel is used, the full functionality provided by the 
Nef_polyhedron_3 class is available. If a kernel that does not use 
polynomials to represent coordinates is used, it is not possible to create or 
load unbounded Nef polyhedra, but all other operations work as expected 
[Cd01]. 
 
Now we want to explain programmer interface of nef polyhedra with small 
examples in practically use. CGAL::Nef_polyhedron_3<Traits> 
formally defined as follows: 
 
 
template <  class Nef_polyhedronTraits_3,   
   class Nef_polyhedronItems_3 = CGAL::SNC_items,   
   class Nef_polyhedronMarks   = bool >   
 
class Nef_polyhedron_3;   
 

 
The first parameter requires one of the following exact kernels:  
 
• Homogeneous, Simple_homogeneous, Extended_homogeneous_3 

parameterized with Gmpz, leda_integer or any other number type 
modelling . 

 
• Cartesian, Simple_cartesian, Extended_cartesian_3 

parameterized with Gmpq, leda_rational, Quotient<Gmpz> or any 
other number type modelling .  

 
The second and the third arguments are for future considerations. Neither 
Nef_polyhedronItems_3 nor Nef_polyhedronMarks is specified, yet. 
Only default types should be used at present for these two template 
parameters. Out of them, there are some limitations kernel representations. 
These limitations and related exceptions are also discussed with all details 
in sections 3.3.2.1 and 3.3.2.2 in implementation chapter.  
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Nef_polyhedron_3 has three kinds of constructor. The first one, creates a 
Nef polyhedron and initializes it to the empty set if space == EMPTY and 
to the whole space if space == COMPLETE, defined as follows: 
 
  Nef_polyhedron_3<Traits> N(Content space = EMPTY); 
 
The small example shows this constructor with necessary kernel 
representation. The example creates two Nef polyhedra - N0 is the empty 
set, while N1 represents the full space, i.e., the set of all points in the 3-
dimensional space: 
 
 
#include <CGAL/Gmpz.h> 
#include <CGAL/Homogeneous.h> 
#include <CGAL/Nef_polyhedron_3.h> 
 
typedef CGAL::Homogeneous<CGAL::Gmpz>  Kernel; 
typedef CGAL::Nef_polyhedron_3<Kernel> Nef_polyhedron; 
 
void main() { 
  Nef_polyhedron N0(Nef_polyhedron::EMPTY); 
  Nef_polyhedron N1(Nef_polyhedron::COMPLETE); 
} 
 

 
The second constructor allows only extended kernel representations. This 
one creates a Nef polyhedron containing the halfspace left of plane p 
including p if b==INCLUDED   , excluding p if  b==EXCLUDED, defined as 
follows: 
 
 Nef_polyhedron_3<Traits> N(Plane_3 p, Boundary b = INCLUDED); 

 
See the following example. This example shows the various constructors. We 
can create the empty set, which is also the default constructor, and the full 
space, i.e. all points of 3\  belongs to the polyhedron. We can create a 
halfspace defined by a plane bounding it. Note that, extended kernels used 
here. The halfspace constructor has a second parameter that specifies 
whether the defining plane belongs to the point set 
(Nef_polyhedron::INCLUDED) or not (Nef_polyhedron::EXCLUDED). 
The default value is Nef_polyhedron:: INCLUDED. 
 
 
#include <CGAL/Gmpz.h> 
#include <CGAL/Extended_homogeneous.h> 
#include <CGAL/Nef_polyhedron_3.h> 
 
typedef CGAL::Extended_homogeneous<CGAL::Gmpz>  Kernel; 
typedef CGAL::Nef_polyhedron_3<Kernel>  Nef_polyhedron; 
typedef Nef_polyhedron::Plane_3  Plane_3; 
 
void main() { 
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  Nef_polyhedron N0; 
  Nef_polyhedron N1(Nef_polyhedron::EMPTY); 
  Nef_polyhedron N2(Nef_polyhedron::COMPLETE); 
 
  Nef_polyhedron N3(Plane_3( 1, 2, 5,-1)); 
  Nef_polyhedron N4(Plane_3( 1, 2, 5,-1), Nef_polyhedron::INCLUDED); 
  Nef_polyhedron N5(Plane_3( 1, 2, 5,-1), Nef_polyhedron::EXCLUDED); 
 
} 
 

 
The third and last constructor creates a Nef polyhedron, which represents 
the same point set as the polyhedral surface P does, defined as follows: 
 
 Nef_polyhedron_3<Traits> N(Polyhedron& P); 

 
Nef_polyhedron_3 provides an interface for the conversion between 
polyhedral surfaces represented with the CGAL::Polyhedron_3 class and 
Nef_polyhedron_3.  The Polyhedron_3 class can represent also 
orientable 2-manifold objects with boundaries. The surfaces with boundaries 
from the conversion to Nef_polyhedron_3 excluded, since they have no 
properly defined volume. In other words, they must be closed ones. This is a 
precondition. In our implementation are used this constructor.  
 
Defined handles and iterators to visit stored objects in data structure, 
summarized in following table. Out of them, some circulators are also 
defined for user convenience. For more details [Cd01]. Note that, namespace 
prefix Nef_polyhedron_3<Traits>:: extracted in first table for short 
table contents.  
 

 
Additionaly, following object types defined for nef polyhedron: 
 
 

Handles Iterators Access 
Vertex_const_handle Vertex_const_iterator vertices_begin()…end() 
Halfedge_const_handle Halfedge_const_iterator halfedges_begin()…end() 
Halffacet_const_handle Halffacet_const_iterator halffacets_begin()…end() 
Volume_const_handle   Volume_const_iterator   volumes_begin()…end() 
SVertex_const_handle SVertex_const_iterator  
SHalfedge_const_handle SHalfedge_const_iterator  
SHalfloop_const_handle SHalfloop_const_iterator  
SFace_const_handle   SFace_const_iterator  

Nef_polyhedron_3<Traits>::Point_3   location of vertices. 
Nef_polyhedron_3<Traits>::Segment_3 segment represented by a halfedge. 
Nef_polyhedron_3<Traits>::Vector_3 direction of a halfedge. 
Nef_polyhedron_3<Traits>::Plane_3 plane of a halffacet lies in.   
Nef_polyhedron_3<Traits>::Nef_polyhedron_S2 a sphere map. 
Nef_polyhedron_3<Traits>::Polyhedron A polyhedral surface. 
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Following example show us using some of these handles in a point query, it 
is also interesting example to using CGAL::assign function. The 
locate(Point_3 p) function locates the point p in the Nef polyhedron and 
returns the item the point belongs to. The locate function returns an 
instance of Object_handle, which is a polymorphic handle type 
representing any handle type. For further usage of the result, the 
Object_handle has to be casted to the concrete handle type. The 
CGAL::assign function performs such a cast. It returns a boolean that 
reports the success or the failure of of the cast. Looking at the possible 
return values of the locate function, the Object_handle can represent a 
Vertex_const_handle, a Halfedge_const_handle, a Halffacet_ 
handle, or a Volume_const_handle. One of the four casts will succeed.  
 
 
// file: examples/Nef_3/point_location.C 
 
#include <CGAL/Gmpz.h> 
#include <CGAL/Homogeneous.h> 
#include <CGAL/Nef_polyhedron_3.h> 
#include <CGAL/IO/Nef_polyhedron_iostream_3.h> 
 
typedef CGAL::Homogeneous<CGAL::Gmpz> Kernel; 
typedef CGAL::Nef_polyhedron_3<Kernel> Nef_polyhedron_3; 
typedef Nef_polyhedron_3::Vertex_const_handle  Vertex_const_handle; 
typedef Nef_polyhedron_3::Halfedge_const_handle  Halfedge_const_handle; 
typedef Nef_polyhedron_3::Halffacet_const_handle  Halffacet_const_handle; 
typedef Nef_polyhedron_3::Volume_const_handle  Volume_const_handle; 
typedef Nef_polyhedron_3::Object_handle   Object_handle; 
 
typedef Kernel::Point_3 Point_3; 
 
int main() { 
  Nef_polyhedron_3 N; 
  std::cin >> N; 
 
  Vertex_const_handle v; 
  Halfedge_const_handle e; 
  Halffacet_const_handle f; 
  Volume_const_handle c; 
 
  Object_handle o = N.locate(Point_3(0,0,0)); 
 
  if(CGAL::assign(v,o)) 
    std::cout << "Locating vertex" << std::endl; 
  else if(CGAL::assign(e,o)) 
    std::cout << "Locating edge" << std::endl; 
  else if(CGAL::assign(f,o)) 
    std::cout << "Locating facet" << std::endl; 
  else if(CGAL::assign(c,o)) 
    std::cout << "Locating volume" << std::endl; 
  //other cases can not occur 
 
  return 0; 
} 
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As explained before, Nef polyhedra are closed under Boolean set operations. 
The class Nef_polyhedron_3 provides functions and operators for the 
most common ones: complement, union, difference, intersection and 
symmetric difference. Additionally, the operators *=, -=, *= and ^= are 
defined. Nef_polyhedron_3 also provides the topological operations 
interior, closure, and boundary. With interior() one deselects all 
boundary items, with boundary() one deselects all volumes, and with 
closure() one selects all boundary items.  
 
Regularized set operations (discussed in Chapter 2.8.1.5) are important since 
they simplify the class of solids to exclude lower dimensional features and 
the boundary belongs to the point set. These properties are considered to 
reflect the nature of physical solids more closely. Regularized polyhedral 
sets are a subclass of Nef polyhedra. CGAL provide the regularization 
operation as a shortcut for the consecutive execution of the interior and the 
closure operations [Cd01]. Unary and binary set operations with overloaded 
operators summarized following table: 
 

Method Defined  Operators Return 
N.interior()   the interior of N. 
N.boundary()   the boundary of N. 
N.closure()   the closure of N. 
N.regularization()   the closure of the interior, of N. 
N.complement() !N  the complement of N. 
N.intersection(N1) N*N1 N*=N1 the intersection of N and N1. 
N.join(N1) N+N1 N+=N1 the union of N and N1. 
N.difference(N1) N-N1 N-=N1 the difference between N and N1. 
N.symmetric_difference(N1) N^N1 N^=N1 the sym. difference of N and N1. 

 

Additionaly some point set predicates defined which returns a Boolean 
value listed following table: 
 

Predicate Return true if 
N.is_empty() N is the empty point set. 
N.is_space() N is the complete 3D space. 
N == N1 N and N1 comprise the same point sets. 
N != N1 N and N1 comprise different point sets. 
N  < N1 N is a proper subset of N1. 
N  > N1 N is a proper superset of N1. 
N <= N1 N is a subset of N1. 
N >= N1 N is a superset of N1. 

 

Following well described CGAL example can give an idea how can be used 
this operators with Nef structures: 
 
 
// file: examples/Nef_3/point_set_operations.C 
 
#include <CGAL/Gmpz.h> 
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#include <CGAL/Extended_homogeneous.h> 
#include <CGAL/Nef_polyhedron_3.h> 
 
typedef CGAL::Extended_homogeneous<CGAL::Gmpz>  Kernel; 
typedef CGAL::Nef_polyhedron_3<Kernel>  Nef_polyhedron; 
typedef Nef_polyhedron::Plane_3  Plane_3; 
 
int main() { 
  Nef_polyhedron N1(Plane_3( 1, 0, 0,-1)); 
  Nef_polyhedron N2(Plane_3(-1, 0, 0,-1)); 
  Nef_polyhedron N3(Plane_3( 0, 1, 0,-1)); 
  Nef_polyhedron N4(Plane_3( 0,-1, 0,-1)); 
  Nef_polyhedron N5(Plane_3( 0, 0, 1,-1)); 
  Nef_polyhedron N6(Plane_3( 0, 0,-1,-1)); 
 
  Nef_polyhedron I1(!N1 + !N2);  // open slice in yz-plane 
  Nef_polyhedron I2(N3 - !N4);   // closed slice in xz-plane 
  Nef_polyhedron I3(N5 ^ N6);    // open slice in yz-plane 
  Nef_polyhedron Cube1(I2 * !I1); 
  Cube1 *= !I3; 
  Nef_polyhedron Cube2 = N1 * N2 * N3 * N4 * N5 * N6; 
 
  CGAL_assertion(Cube1 == Cube2);  // both are closed cube 
  CGAL_assertion(Cube1 == Cube1.closure()); 
  CGAL_assertion(Cube1 == Cube1.regularization()); 
  CGAL_assertion((N1 - N1.boundary()) == N1.interior());  
  CGAL_assertion(I1.closure() == I1.complement().interior().complement()); 
  CGAL_assertion(I1.regularization() == I1.interior().closure()); 
 
} 
 
 

Nef Polyhedra may be a part of this algorithm library which has larger 
dependency with other parts. It’s impossible to explain every detail here. 
This was only a minimum overview that respect to our goals. All references 
about the theory and implementation of different parts of Nef-Polyhedra 
classified and listed in a separate paper [Cp10]. There is more then 20 
references here classified under parts of Definition and theory, Edge based 
data structures for 2-D Nef, Infimaximal Frames, 2D-Nef Polyhedra and 3D 
Nef Polyhedra. More details about definitions and implementation of the 
parts of nef polyhedra are discussed in the documents which referenced in 
[Cp10].  
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Chapter 3 
 

Implementation 

 
 

 
 

I believe that the moment is near 
 when by a procedure of active paranoiac-thought, 

 it will be possible to systematize confusion  
and contribute to the total discrediting of the world of reality.  

 
Salvador Dali  
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Chapter 3 

3. Implementation 
In order to easily apply the Boolean set operations on WSS files, a 
programmer interface is implemented between WSS and CGAL.  The first 
part of this chapter aims at giving an overview about this interface and used 
file formats. The second part of this chapter, namely 'implementation 
details', explains the details of different implementation steps. In the third 
and the last part gives some examples of the usage of the programmer 
interface. The application of the developed interface is explained with 
different examples. 

3.1 Overview 

The motivation and reasons behind designing this programmer interface 
have already been explained in the first chapter. The programmer interface 
must support some operations which are necessary for using the CGAL in 
the processing of WSS data files. These operations are summarized as 
follows: 
 
• Extracting and storing surfaces of wafer components which are 

contained in WSS data files.  
• Building CGAL objects (Polyhedron_3 / Nef_Polyhedron_3) from the 

currently and previously extracted surfaces on which Boolean set 
operations are applied. 

• Handling the data coming from the following sources in a cost-effective 
and flexible manner:  

o Extracted surfaces 
o Created objects 
o Result of operations 

• Debugging the data retrieved any phase of a session. 
• Visualizing the objects, results, and extractions.  
• Producing outputs from the result of operations and making these 

available in different file formats for other purposes. 
• Enabling described modules should be able to work with different kernel 

representations in CGAL. 
 
A flexible modular structure is designed and described for satisfying the 
above mentioned requirements. In order to response the demands of 
different kinds of applications; the modules are designed to operate 



 74

independently when necessary. They also have a well-organized data flow 
between internal processes. The modular structure consists of five modules: 
Extractor, Creator, Outer, Checker and Displayer. Before moving on to the 
tasks of each module, it would be useful to give an overall idea about the 
interaction between the modules. Fig.3.1 illustrates the work-flow of 
modules in a typical session. 

 
As illustrated above, the modules can share a data pool without conflicts. 
Result of operations also can be reused in new operations. It's also possible 
to conduct the necessary operations during different sessions. For instance, 
in one session, we can use the Extractor to extract and store the surfaces 
externally; and, in another session, we can use the Creator to process these 
externally stored files. Creator can build objects from internal 
representations as well as from external files. It is also possible to include 
the Displayer and the Checker in a session when debugging and displaying 
are necessary. While STL containers are used for internal data storage; the 
different file formats are used for storing the date externally. 
 
It is possible to have multiple instances of the Extractor. This possibility 
allows processing different WSS data files in the same session. The option of 
multiple instances is available also for the other modules. However, under 
normal circumstances, one session needs only one instance of the other 
modules. The following part shortly introduces the fives and defines their 
basic functions: 
 

Fig. 3.1 Work-flow of described modules 
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Extractor: The Extractor reads and reorders the surface information 
received from the WSS data files with the help of WSS I/O Interface. Some 
WSS data files contain multiple segments. The user can extract the surface 
of the whole wafer component as well as the surface of a selected segment as 
in the case WSS data files with multiple segments. STL containers are used 
for storing the surface information which constitutes of points and facets. 
Extractor can store these STL containers directly as an OFF file. Before 
storing this information, the Extractor does the necessary reordering 
operations for the later steps, such as in the case of correcting the 
orientation of facets. This correction is needed for creating objects 
successfully with the Creator. 
 
Creator: This module offers necessary object creations. The Creator creates 
Polyhedron_3 and Nef_polyhedron_3 using directly the data coming 
from different sources. Creator can build these polyhedral structures using 
either external files or points and facets. In the case of using points and 
facets, the Creator uses the incremental builder mechanism. The 
incremental builder mechanism offers a better debug possibility during the 
creation. The Creator also makes the necessary conversions from 
Nef_polyhedron_3 into Polyhedron_3, and vice versa. Such conversions 
are necessary for file outputs.  
 
Displayer: This module visualizes the created objects with the help of 
CGAL's support library. The Displayer also allows displaying points and 
facets before their creation. This option makes visual debugging possible. 
This module can display the externally stored OFF files.  
 
Checker: This module checks the validity of the created objects. It also 
provides information about the internal data structure of objects. The 
information is revealed in any standard output stream such as std::cout.  
 
Outer: Main task of this module is giving outputs of the created objects in 
different file formats. The Outer has also an additional function for writing 
the Polyhedron_3 objects in native kernel representations. This function is 
useful especially for debugging.  

3.2 File Formats 

In our implementation, we use different file formats for input-output 
operations and the storage of the operation results of some internal 
processes. Before getting into the details of our implementation, it is 
necessary to discuss these file formats and their properties.  
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The WSS data files are organized in sections. Some of these sections 
recursively contain subsections. A wafer component can contain different 
parts with diverse properties. These parts are referred to as Segments. 
Geometric information about surfaces is stored in Segments and Points 
sections. The Points section stores a global list of points where each point is 
defined as a coordinate triple. The following example which is truncated 
from a WSS file shows a WSS file header and a shortened points section. 
 
 
VERSION "1.4"  
NAME   RHVGMLWss 
DIMENSION      3   
POINTS  
{  
       4.000000000000         1.301042689898         0.000000000000    
  ……………………………………………………… 
  ………………………………… 
       1.700270588079         2.673623061747         1.000000000000    
       0.940902075238         3.119240405541         2.502510123488    
} 
……………………… 
 

 
A segment is a spatially boundary of a wafer construction component. A 
WSS file contains at least one segment. The maximum number of segments 
is not limited. The WSS data files store, in segment sections, segment-
relevant-information such as grid elements, material properties, etc. The 
following example which is truncated from the same WSS data file shows 
the structure of a segment which contains such information. In the section 
GRID gr_1, there are integer sequences belonging to the first segment of 
this segments section. These numbers refer to their respective points which 
are listed in the above points section. 
 
 
SEGMENTS   
{ 
 Mat1 
 {  
   GRID gr_1 
   {  
     27  38  36  39 
     46  57  36  49 
     ………………………… 
     57  46  37  47 
     1  42  0  47 
  }  
  ATTRIBUTES  
  { 
   MaterialType  
    {  
       " Si "  
………………………… 
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This model for storing surface data prevents the storage of redundant 
coordinate information. Due to this significant advantage, most file formats 
use this model. For instance, a triangle is stored as an integer for each of 
its vertices (instead of three double for each coordinate triple).  
 
The solid object in the Figure 3.2 represents a triangulated surface 
boundary of a wafer component. The highlighted surface contains six 
vertices and four facets. Some vertices are shared by different facets. As a 
result, in the point list, six coordinate triples for six vertices are stored. And, 
in the facets list, facet vertices are stored as integers which refer to their 
respective points in the point list.  

 
A similar model is used by Object File Format (OFF). The default file format 
supported in CGAL for output as well as for input is the OFF, with file 
extension .off.  The visualization tool Geomview can browse OFF files 
directly. Geomview is used also by the support library of CGAL for 
visualizing kernel objects as well as 3D-Polyhedral surfaces. Therefore, the 
OFF is the main file format which is used for inputs and outputs in our 
implementation. 
 
An OFF file is quite simple to explain. The following example shows a 
simple OFF file which describes a cube with eight vertices and six facets. 
The first two lines of an OFF file are reserved for the header. The first line 
contains the string "OFF".  The second line contains the number of faces and 
vertices. The lines starting with '#' are interpreted as comments. The header 
is followed by a list of coordinate triples, each coordinate triple representing 
one point and occupying one line in the list. The point list is followed by a 
facet list. In the facet list, each facet is described with one line. The first 
number of the lines refers to the number of the facet vertices. In our 

 
Fig 3.2. Example for storing the points and facets of a triangulated surface of  

The 3D solid objects. 



 78

example, each line starts with the number '4'. This number can of course 
change by different facets depending on the number of their vertices; and, as 
a result, different lines can start with different numbers. The following 
numbers in a line refer to the points in the points list.  
 
 
OFF 
8 6 0 
# points 
 -1 -1  1 
 -1  1  1 
  1  1  1 
  1 -1  1 
 -1 -1 -1 
 -1  1 -1 
  1  1 -1 
  1 -1 -1 
# facets 
  4  3 2 1 0 
  4  0 1 5 4 
  4  6 5 1 2 
  4  3 7 6 2 
  4  4 7 3 0 
  4  4 5 6 7 
 

 
The additional file formats supported for outputs in our implementation are 
follows: OpenInventor (.iv); VRML 1.0 / 2.0 (.wrl); and Wavefront Advanced 
Visualizer object format (.obj). All these file formats have in common that 
they represent a surface as a set of facets. Each facet is a list of indices 
pointing into a set of vertices. Vertices are represented as coordinate triples. 
The chapter four gives some examples of outputs in these file formats. 
Further details on these well-known file formats are also available on the 
World Wide Web. 
 
Another file format which is used in our implementation is the NEF3. This 
format can be used via input-output operators for storing and reading the 
information about 3D-Nef structures. This native file format has not yet 
been documented. Our implementation uses this format for Nef-
Polyhedrons. The Outer can store Nef-Polyhedrons as an NEF3 file which 
can be used with the Creator for building Nef-Polyhedrons. 
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3.3 Implementation Details 

This section explains the above introduced five modules in detail. These 
modules are used for applying Boolean set operations on received surfaces 
from WSS data files. The modules are presented as C++ header files which 
are named after their respective modules: extractor.h, creator.h, 
displayer.h, checker.h, outer.h. In addition, a further header file 
called globals.h is created for the necessary global variables, type and 
include definitions. 
 
In our implementation, we use different handles and methods belonging to 
different namespaces such as CGAL, WSS, and C++ standard namespaces. 
In order to avoid any confusion, we put the namespaces as prefixes in front 
of the method or handle names: NAMESPACE::handle_name or 
NAMESPACE::method_name(). 
 
This section consists of six sub-
sections. The first five sub-
sections give detailed 
information about our five 
modules. Each of these sub-
sections start with a diagram of 
the related module. These 
diagrams visualize the following 
information: Input and Output 
Types; public and private 
methods; internal calls; and 
templates used by the module. As seen in the small diagram, public methods 
and private methods are represented with grey and white boxes 
respectively. Internal calls are illustrated with a tree-like structure. All 
allowed types of inputs and outputs are shown on the right side of the 
diagrams. In the last and sixth subsection, we discuss the header file 
globals.h. 

3.3.1 Extractor 

This module offers access to the I/O interface of WSS. With the I/O 
interface of WSS, it is possible to extract the triangulated surface 
information of wafer components, which are stored in WSS data files.  
 
As discussed in chapter CGAL, 3D-Polyhedral surfaces can represent only 2-
manifold surfaces. Therefore, we are only interested in extracting the 
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triangulated surface information about wafer components from WSS data 
files. As earlier mentioned, the WSS data files contain some information 
which is irrelevant for us such as the tetrahedrons which constitute the 
volume of wafer components and some material properties. 

 
The Extractor uses the functions of WSS library to read the points and 
facets belonging to the surfaces of wafer components. Handles and methods 
are described by WSS library to iterate on the surfaces. The following 
header files are included from the WSS library for accessing and receiving 
surface information: 
 
 
#include "wssreader.hh" 
#include "waf_config.hh" 
#include "wafertools.hh" 
 
 
The constructor function of the Extractor activates the requested file for 
later extractions with the help of the reader of WSS. In other words, the 
constructor function instantiates a WSS::Wafer_h handle which refers to 
the related WSS data file. This instantiation has a standard way of 
accessing to WSS data files: 
 
 
   Config_h cfg(new Config());     // Setting up reader 
   Reader_h reader(new WssReader(cfg, fname));  // Loading wafer 
    
   Wafer_h wafer = newWafer(reader, cfg);   // Wafer is instanced 
 
 

 Extractor(file)

lessXYZ<Point>()

getSurface()

findIndice(Point)

sortPoints()

WSS

buildOFF(file) OFF

intgetNOS()

extract()

extract(segNum)

STL

STL

 
Fig 3.3. The module Extractor 
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The WSS::Config_h handle sets up the reader.  The WSS::Reader_h 
handle loads the wafer from requested WSS data file. Finally, the related 
wafer is instantiated with the help of the WSS::Wafer_h. handle. When the 
wafer is instantiated, we are ready to access the information, which is 
stored in the WSS files. An Extractor object can be instantiated from any 
scope of a session easily: 
  
 
Extractor WSS1("file1.wss"), WSS2("file2.WSS);  
 
 
Some of the WSS data files contain multiple segments. If you use the WSS 
I/O interface, it makes it possible to extract not only the complete surface of 
a wafer component, but also the surface of each segment. The Extractor 
describes a method, namely Extractor::getNOS(), which is used for 
getting the number of segments contained in the requested WSS data file. If 
number '1' is returned, this means WSS data file contains only one single 
segment. Please note that, the segments indices start with 0. For instance, 
if the method Extractor::getNOS() returns 3, then the indices of 
segments change between 0 and 2. These indices might be used later for 
referring to the segment whose surface is to be extracted. 
 
The public method Extractor::extract() is used for extracting the 
complete surface of a wafer component. This method is overloaded with the 
method Extractor::extract(int segnum) which is used for extracting 
the surface of an certain segment. As discussed above, the argument 
segnum should contain the indices of the related segment. Both of these 
methods use a special WSS surface handle, namely WSS::Surface_hvh, for 
accessing the desired surface information. These two methods store the 
necessary surface handle WSS::Surface_hvh in the local object variable 
surf. Then, they make a internal call to the private method 
Extractor::getSurface(). After the execution of Extractor:: 
getSurface(), Extractor stores the points and facets of the received 
surface in our STL containers. The WSS::Surface_hvh is instantiated over 
the wafer instance in use as follows:  
 
 
   // getting whole Wafer surface 
   Surface_hvh  surf  = wafer ->getSurface();  
 
       // getting segment surface 
   Segment_h   seg   = wafer ->nextSegment(segNum); 
   Surface_hvh  surf  = seg   ->getSurface();  
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As shown above, the method WSS::getSurface() enables accessing the 
surface of whole wafer directly. In order to access the surface of a certain 
segment, we need two steps: at the first step, we get the certain segment 
with the method WSS::nextSegment(); and, at the second step, we 
access the surface of this segment over the handle WSS::Segment_h  with 
the method WSS::getSurface(). 
 
The points and facets are received over the handle WSS::Surface_hvh , 
they are stored in standard vector containers which are a special type of STL 
containers. In general, the STL containers have the following advantages: 
 

• CGAL is a C++ library which rather suitable for using with the STL 
containers. The data, which is stored in the STL containers can be 
used in a flexible manner.  

• The content of a STL container can be redefined very easily for future 
needs. 

• As linked-lists, the STL containers do not need pre-allocation. 
Because of this reason, they can be used in a cost-efficient manner 
with WSS data files with different memory space requirements. 

 
The Vector containers, in particular, allow access to its elements also with 
indices just as in the case of arrays. This possibility is not offered by 
standard list containers. Our containers for storing points and facets are 
defined as follows: 
 
 
// Kernel representation of points 
typedef CGAL::Cartesian<double>   K1; 
 
// The container definition for points 
typedef std::vector<K1::Point_3>  PointList; 
 
// The container definition for facets 
typedef std::vector<int>    Face; 
typedef std::vector<Face>   FaceList; 
 
// Instances 
PointList    points; 
FaceList   facets; 
 
 
Coming back to a point mentioned earlier, the points and facets are received 
with the help of the WSS::Surface_hvh. After having a surface handle by 
surf, we can iterate over this surface handle with WSS:: 
Surface_hv::iterator. This iteration gives us the points and facets, 
which belongs to this surface.  
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Surface extraction has two internal steps: getting points and getting facets. 
For getting the points, our method Extractor::getSurface()uses the 
surface handle surf. For reading the points, Extractor:: 
getSurface()accesses the triangles on the surface with the above 
mentioned iterator. The following code part shows the step getting points:  
 
 
for ( hit = surf->begin(); hit != surf->end(); hit++ ) { 
           
    aFace = *hit; actPoi = 0;  
    for (i=0; i<3; i++) {  
 
    Wp = *(aFace -> nextPoint(actPoi)); 
    Cp = K1::Point_3(Wp.x,Wp.y,Wp.z);  
  
          if ( std::find(points.begin(),points.end(),Cp) == points.end() ) 
          { points.push_back(Cp); } 
       } 
}  
 
 
Here, hit is defined as WSS::Surface_hv::iterator. In the outer loop, 
we iterate on the triangles of the surface with the help of hit. The content 
of a triangle is stored temporarily in the scope variable aFace which is 
defined as WSS::Surface_h. In the inner loop, we read each point of a 
triangle with the method WSS::nextpoint(), and store this point 
temporarily in Wp.  Wp is defined as WSS::Point which is the default point 
type of the WSS library. In the next line, we convert this WSS point type 
into a CGAL point type which uses the selected kernel representation. In 
the last line of the inner loop, we use a standard algorithm of C++, namely 
std::find(). The points on the surface are shared by different triangles. 
With the help of std::find(), we store only those points which have 
previously not been stored in the list points. Those points, which are 
already existing in the list of points, are skipped.  
 
After storing those points, we sort the point list. The sort operation is 
necessary for finding the indices of a point efficiently in the next step 
(reading facets). For sorting the point list, we describe a binary function 
object. The binary function object uses the predicate 
CGAL::lexicographically_xyz_smaller(p,q) for point comparisons.  
The function object returns to true if  only p is lexicographically smaller 
than q with respect to xyz order.  
 
 
template<class T>  
struct lessXYZ:public binary_function<T,T,bool> { 
  bool operator() (const T& t1, const T& t2) const {  
    return (CGAL::lexicographically_xyz_smaller(t1,t2)); 
  }  
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}; 

 
 
The private method Extractor::SortPoints() calls this function object 
from std::sort(), and sorts points as shown below: 
 
 
   std::sort(points.begin(),points.end(), lessXYZ<K1::Point_3>());  
 
 
The second step, namely getting facets, is implemented into the method 
Extractor::getSurface(). In this step, the triangles of the surface are 
stored in the list facets. For realizing this step, we iterate a second time 
on the surface handle surf. This iteration uses a similar outer loop, which 
is also used in the reading points step. There are some differences between 
the inner loops of the first and second step. Here, it is necessary to find the 
indices of the received points, which are contained in the sorted list. Since 
each triangle consists of three points, three integer indices are stored for 
each triangle. These indices refer to list points. After these three indices 
are stored in a temporal container, this container is added to our list 
facets. As shown in the code below, after the receiving the point Cp, we 
call the method Extractor::findIndice(). Found indices are stored in 
the temporal container tri. 
 
 
    for (i=0; i<3; i++) {  
 
        Wp = *(aFace-> nextPoint(actPoi)); 
        Cp = K1::Point_3(Wp.x,Wp.y,Wp.z);  
 
        j = FindIndice(Cp); 
        tri.push_back(j); 
         } 
       

 
For finding the indices efficiently, we define a finding routine, named 
Extractor::FindIndice(K1::Point_3 &Cp). This function returns 
back to the point orders from the list points.  The described algorithm is a 
classical binary-search algorithm which searches a sorted list by repeatedly 
dividing the search interval in half. The required number of comparisons for 
finding the indices of an element in a point list with n elements is, in worst-
case, (log )O n . For example, the algorithm needs maximum 15 point-to-point 
comparisons to find the indices of a point in a list with 16.384 points. For 
this comparison, the same predicate CGAL::lexicographically_ 
xyz_smaller (p,q) is used. 
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WSS library defines more concepts for accessing points of the surface. For 
instance, we can read these points with object WSS::Locater more easily. 
In the previous version of our implementation, we read the points with 
WSS::Locater. Some received received with the WSS::Locater do not 
belong to the surface. These points cause problems in our later steps, for 
instance, as creating polyhedrons. In order to eliminate these points, we 
first need to identify them in our list, and then delete them. These points 
can be identified only after having the facets read. After the deletion, the 
order of the points is shifted in the list points. Since the indices in the list 
facets refer to the points in the list points, it is necessary to update these 
indices in the list facets accordingly. This way of implementation is a 
successful one. However, since it has a rather complex workflow due to 
elimination and re-indexing, the WSS::Locater is not used for reading 
points in our current version. Therefore, we read the points and facets with 
the help of the handle WSS::Surface_hvh. 
 
At this point, it is necessary to mention that 
we found out that the received triangles had 
different orientations. While some triangles 
have clockwise orientation, others have 
counter-clockwise orientation. As discussed 
earlier in the CGAL chapter, a 
CGAL::Polyhedron_3 object uses half-edge 
data structures for storing the surface 
internally. As a precondition, every facet on 
this structure needs to have the same 
orientation. In addition, the construction of a 
CGAL::Nef_ Polyhedron_3 is successful if all these facets are counter-
clockwise oriented. Therefore, it is necessary to make an orientation check 
for each facet, and correct the orientation of the facets if necessary.  
 
The above problem is solved in the step of getting facets, before storing the 
triangles in list facets. The received triangles with clockwise orientation 
are corrected as counter-clockwise. This check and correction is realized 
using the method WSS::pointOrderOrientation(). This method returns 
true for the facets with clockwise orientation. In this case, indices of the 
triangles, which have been stored previously in the temporal container tri 
need to be reversed. For reversing the indices, we use the standard STL 
algorithm std::reverse(). After the correction, the facet is added to the 
list facets: 
 
 
  if  (aFace->pointOrderOrientation())  
         { reverse(tri.begin(),tri.end());} 
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  facets.push_back(tri); 
 
 
In our implementation, we have preferred to use points and facets lists 
as globally. In some sessions, it is necessary to use multiple Extractor 
instances. Such sessions requires considerable resources. Global containers 
allow a more efficient use of the available resources. Because only one 
surface extraction request is processed at a time, we do not need to store an 
individual list for each Extractor instance. We have used global lists in all 
our sessions in which we have experimented processing the WSS data files. 
All instances of Extractor module have used the global containers without 
any conflicts.   
 
Using the method Extractor::buildOFF() is another way of minimizing 
necessary resources. The public method Extractor::buildOFF()can give 
an OFF file which is created from the contents of our STL containers. In 
order enable this, we use standard output streams. These OFF files make 
possible direct creations with the module Creator in later sessions, and this 
without any extractions. The method Extractor::buildOFF() is also 
useful for debugging. Some other debugging-methods are implemented in 
other modules. For instance, the module Displayer can visualize the lists 
points and facets. These additional methods are explained in the related 
subsections about the modules.  
 
In conclusion, after instantiation of an Extractor, the requested wafer is 
instantiated, and the lists points and facets are cleared. After the 
instantiation, we are ready to use Extractor::extract() or 
Extractor::extract(segnum). After a request for one of these methods, 
Extractor::getSurface() is called internally to extract the desired 
surface into the lists points and facets. While the list points contains 
sorted points, the list facets contains counter-clockwise oriented triangles. 
Each new request causes new extractions or re-extractions from desired 
surfaces into our lists points and facets. During the session, these lists 
are continuously cleared and reused. Therefore, these lists contain only the 
extracted surface information of the last request. The public method 
Extractor::buildOFF() can directly write an OFF file from the current 
content of lists points and facets. At this point, we are ready to use the 
Creator for building the necessary polyhedral structures on which Boolean 
set operations are applied. 
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3.3.2 Creator 

Our main object Creator offers several methods for creating CGAL 
Polyhedral structures, which belong to the classes CGAL::Polyhedron_3 
and CGAL::Nef_polyhedron_3.  

 
Creator uses two main techniques for the creation: first, building via 
incremental building mechanism with the data stored in STL containers; 
and second, scanning the external files containing data from earlier 
sessions. First method gives great debug possibilities during the creation. 
Second method enables creations from OFF/NEF3 files.  
 
Creator offers following public methods for creating polyhedrons:  
 
Method  Used data source  

 
Fig 3.4. The module Creator. 
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buildPOLY() STL Containers 
OFFtoPOLY(char *fname); OFF file 
convertPOLY(Nef_polyhedron& NP ,bool scaling=true) Nef_polyhedron_3 
 
Corresponding public methods for creating Nef-Polyhedrons are following: 
 
Method Used data source 
buildNEF() STL Containers 
OFFtoNEF(char *fname); OFF file 
NEF3toNEF(char *fname); NEF3 file 
convertNEF(Polyhedron& P, bool scaling=true) Polyhedron_3  

 
Described public methods returns either CGAL::Polyhedron_3 or CGAL:: 
Nef_polyhedron_3. The user can define the kernel representations, which 
are used by those objects.  
 
Creator is also responsible for the Boolean set operations on 
CGAL::Nef_polyhedron_3. Required operators are already described by 
CGAL for applying Boolean set operations on created objects. These 
operations have some additional requirements such as: coordinate 
translations; kernel conversions; and object conversions for outputs. These 
additional requirements are automatically handled by Creator, if it is 
necessary. The details of these methods will be explained later in this 
section. Fig.3.4 shows the internal structure of module Creator. 
  
Before going into the details of the Creator, it is necessary to clarify some 
questions such as: "Why we need some transformations or conversions?"; 
"Why we need different kernel representations?"; etc. Such as discussed in 
previous chapters, Boolean set operations and 3D-Nef Polyhedron are newly 
implemented in CGAL algorithm library and not really integrated into this 
library. As a result, this new parts are requiring quite a number of 
preconditions. Furthermore, some options promised for the future releases 
of the CGAL are not supported at the moment. During the development of 
Creator, we have consulted the CGAL team several times. Those 
consultations have proved to be rather helpful in overcoming the above 
mentioned difficulties.  

3.3.2.1 Conversions 

Two different classes are described in the algorithm library of CGAL, to 
represent polyhedral structures in three dimensions: 
CGAL::Polyhedron_3 and CGAL::Nef_Polyhedron_3.  
 
These classes have some advantages and disadvantages. The 
CGAL::Polyhedron_3 is relatively old and a well-integrated class of 
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CGAL. This class has got more possibilities for inputs/outputs and different 
constructors. But Boolean set Operations are not offered with this class. 
Since these operations are offered only with the 
CGAL::Nef_Polyhedron_3, we need this class for using the Boolean set 
operations. But it is not possible to create a CGAL::Nef_Polyhedron_3 
from points and facets. The CGAL:: Nef_polyhedron_3 has got mainly 
two different constructors at the moment. One of the constructors is 
intended for the surfaces with infinite boundaries, which requires an 
extended kernel representation. The other constructor gives the possibility 
to construct a CGAL::Nef_polyhedron_3 directly from a 
CGAL::Polyhedron_3 object. In order to use this constructor we must 
create before a CGAL:: Polyhedron_3. Therefore, we first create a 
CGAL::Polyhedron_3, and then, using the second constructor, we convert 
it into a CGAL::Nef_polyhedron_3. 
 
Since we should use those two different classes for creations, some 
conversions are necessary between CGAL::Polyhedron_3 and 
CGAL::Nef_Polyhedron_3. After the creation of a Polyhedron, we must 
convert it into a NEF-Polyhedron for applying Boolean Set Operations. After 
these operations, we have some results objects, which are also Nef-
Polyhedrons. NEF-Polyhedron has a native topologic structure, which can 
be stored only as a NEF3 native file format. Also here, we need to convert 
these operation results into Polyhedrons for producing more useful outputs. 
As a result, some conversions are necessary in both direction. These two 
classes has got different native properties, which are affected necessary 
conversions.   
 
CGAL::Polyhedron_3 has following properties: 
 

• It can represent only oriented 2-manifold surfaces.  
• These surfaces can also have border edges, i.e. it is allowed to open 

surfaces.  
• The polygons, which constitute the surfaces need to be oriented in the 

same direction (clockwise or counter-clockwise).  
 
On the other side, CGAL::Nef_polyhedron_3 object has following 
properties: 
 

• This class closed under Boolean Set Operations with all generality. It 
can model, non-manifold solids, unbounded solids, and objects 
comprising parts of different dimensionality. 

• The polygons, which constitute the surfaces need to be counter-
clockwise oriented, or else the CGAL::Nef_polyhedron_3 cannot 
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correctly distinguish between the interior and the exterior of the solid 
during the Boolean Set Operations. 

 
As a result, these properties bring us following pre-conditions during 
necessary conversions:  
 

(1) The CGAL::Polyhedron_3 can also represent open surfaces, which 
do not properly define a volume. This kind of CGAL::Polyhedron_3 
objects are excluded from the conversion into CGAL:: 
Nef_polyhedron_3. Therefore, a CGAL::Polyhedron_3 object is 
convertible into CGAL:: Nef_polyhedron_3, if it is closed. 
 

(2) The results of the Boolean Set Operations can have also non-manifold 
situations. This does not cause a problem because the 
CGAL::Nef_polyhedron_3 can also model non-manifold solids. 
Unfortunately, non-manifold surfaces are not offered with 
CGAL::Polyhedron_3. Therefore, CGAL::Nef_polyhedron_3 
object is convertible into a CGAL::Polyhedron_3 object, if it is 2-
manifold. 
 

(3) The polygons, which constitute the surfaces need to be counter-
clockwise oriented. We already solved this orientation problem with 
the Extractor. 

 
In the necessary conversions in both directions, the methods of Creator 
check above explained pre-conditions. In order to make these conversions, 
the Creator offers two public methods: 
 
1. Creator::convertNEF(Polyhedron& Px, bool scaling=true) 

 
This method converts Px into a Nef-polyhedron. Before the conversion, this 
method tests the condition (1) with the member function 
CGAL::Polyhedron_3::is_closed(). This member function returns 
true if Px is closed. This means our method returns the desired Nef-
Polyhedron. Otherwise, an empty NEF-polyhedron will be returned. The 
option scaling will be shown at the next section. 

 
2. Creator::convertPOLY(Nef_polyhedron& NPx, bool scaling=true). 

 
This method converts NPx into a Polyhedron. Before the conversion, this 
method tests the condition (2) with the member function 
CGAL::Nef_polyhedron_3::is_simple(). This member function 
returns true if NPx is 2-manifold. This means our method returns the 
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desired Polyhedron. Otherwise, an empty Polyhedron is returned. The 
option scaling will be cleared in next section. 

 
In addition, since directly Nef-polyhedron creations is not possible, the 
public method Creator::convertNEF() is called also internally for 
building a Nef-polyhedron from STL-Containers as well as for scanning from 
OFF files. In other words this method is necessary for all Nef-polyhedron 
requests.  
 
The main job of method Creator::convertPOLY() is converting the 
result of Boolean set operations realized between two nef-structure,  into 
Polyhedrons. After this conversion it is possible -for the first time- to get 
some outputs, with Outer in different file formats. Otherwise, the native 
format NEF3 is one and only solution.  

3.3.2.2 Kernel Limitations and Solutions 

Another problem relates to kernel representations. We can select kernel 
representation of a CGAL::Polyhedron_3 without any limitations. All 
number types provided by the support library can be used with this class. 
However, in case of CGAL::Nef_polyhedron_3, there are some limitations 
to the selection of kernel representations. Under the suggestions of the 
CGAL team, one of the following kernel representations is suitable for using 
with 3D-Nef Polyhedron: 
 
 
typedef CGAL::Cartesian<Gmpq>     K;  
typedef CGAL::Cartesian<Quotient<Gmpz> >   K; 
typedef CGAL::Cartesian<leda_rational>    K; 
 
typedef CGAL::Homogeneous<Gmpz>     K; 
typedef CGAL::Homogeneous<leda_integer >   K; 
 
 
The common property of these representations, they are parameterized with 
the number types which are offers exact integers. Especially, the CGAL 
team recommend for CGAL::Nef_polyhedron_3, the Homogeneous kernel 
representation, which is parameterized with the number type CGAL::Gmpz. 
In addition, LEDA is supported as commercially. It is not possible to use the 
number types, which are offered by LEDA, before buying this library.  
 
If Polyhedrons and Nef-Polyhedrons use the same kernel representations, 
Polyhedrons will be subject to the same limitations as the Nef-polyhedrons. 
In order to overcome this restriction, in our implementation, we offer the 
possibility to select different kernel representations for Polyhedrons and the 
Nef-Polyhedrons. In this case, our implementation carries out the kernel 
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conversion internally between a Polyhedron and Nef_polyhedron. User 
of our interface is free to select any kernel representation for Polyhedrons. 
Nef-polyhedrons should be used only with allowed ones. This dual kernel 
representation defined as follows: 
 
 
// Number Types 
 
typedef double     NT1; 
typedef CGAL::Gmpz     NT2; 
 
// Kernels 
 
typedef CGAL::Cartesian<NT1>    K1; 
typedef CGAL::Homogeneous<NT2>    K2; 
 
// Type definitions for Polyhedron / NEF 
 
typedef CGAL::Polyhedron_3<K1>          Polyhedron; 
typedef   Polyhedron::HalfedgeDS          HalfedgeDS; 
 
typedef CGAL::Polyhedron_3<K2>          Polyhedron_K2; 
 
typedef CGAL::Nef_polyhedron_3<K2>      Nef_polyhedron; 
 
 
Here K1, our main kernel representation for all internal operations on 
Polyhedrons. The kernel representation K2 is only used with the Nef-
Polyhedron related operations. But, of course, the user can define the same 
kernel for both of K1 and K2. In this case, it is possible to use only the kernel 
representations allowed by CGAL::Nef_polyhedron_3. The necessary 
conversions between Polyhedrons and Nef-Polyhedron, are realized with the 
secondary polyhedron type (Polyhedron_K2). This secondary type is used 
the same kernel representation K2 with Nef-Polyhedrons. Necessary kernel 
conversion is applied when user is requested a conversion between 
Polyhedrons and Nef-Polyhedrons. The public method Creator:: 
convertNEF(Polyhedron& Px) is an example for this case. In order to 
make this conversion, standard I/O streams are used:  
 
  
 Polyhedron_K2 Px2;  
 
  ofstream out("temp.OFF"); out << Px; 
   ifstream in ("temp.OFF"); in  >> Px2; 
 
  Nef_Polyhedron  NPx = Nef_polyhedron(Px2); 
 

 
Another problem arose during the construction of 
CGAL::Nef_polyhedron_3 because of small double coordinates received 
from WSS data files. We first noticed this problem during the 
implementation of the test releases of this module, and consulted with the 
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CGAL team about this problem. This problem is also related to the limited 
kernel representations. Since CGAL::Nef_polyhedron_3 uses exact 
number representations during its construction, Nef-Polyhedrons need to 
work with integer coordinates. In the simplification phase, the constructor 
of CGAL::Nef_polyhedron_3 converts a triangulated surface into a Nef-
Polyhedron in that it reduces the coplanar faces to a single face. In this 
phase, small double coordinates give some errors such as: 
 
 
CGAL error: assertion violation! 
Expr: pe_prev->facet()->plane().has_on(pe_target) 
File: /home/alperix/tu/CGAL/include/CGAL/Nef_3/polyhedron_3_to_nef_3.h 
 
 
The explanation about this problem delivered by the CGAL team is as 
follows: 
 

[…] Interesting for you, our representation demands that every vertex on the 
boundary of a facet lies on the same supporting plane. If I have 4 or more vertices 
on a facet represented by double coordinates, the rounding of the coordinates has an 
unpleasant effect. Taking different triples of the vertices might define different 
supporting planes. In this case we must triangulate the facet. We have written a 
constructor for this recently which will be available in the next release. At the 
moment we try to use triangulated objects with integer coordinates, only. 

 
The suggested solution for this exceptional problem lies in scaling points. If 
we multiply each coordinate with a high value such as ten thousand, one 
million, etc., then we have not such errors anymore during the construction 
phase. Therefore, the Creator describes some methods for scaling and 
rescaling the vertices (points) of Polyhedrons. These point translations are 
necessary before the conversions. Scaling methods are using a global scale 
factor, which is multiplied with each point during the scaling and rescaling. 
This solution is not an optimal one, but at the moment there are not other 
known solutions to solve this problem. 
 
The std::transform algorithm is used for necessary point translations. 
For this translations are described two function object namely scaleP() 
and rescaleP(). First one is used before Nef constructions. The method 
Creator::convertNEF() calls this function object internally. Second one 
for inverse translations, is used by the method 
Creator::convertPOLY(): 
 
 
 transform( Px.points_begin(), Px.points_end(), Px.points_begin(), scaleP); 
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This required transformation realized with this function objects replace all 
vertices of requested polyhedron, with a scaled point by global values which 
is named internally xScale / xRescale. This function objects take a point 
defined as type K1::Point_3 and return back a recalculated point after 
some kernel operations. As discussed in CGAL chapter, we can't multiply a 
point with a scalar, but even a vector. Therefore with the help of constant 
CGAL::ORIGIN, we make first the necessary vector conversion. The result 
vector is reconverted to point before return back. Discussed conversion 
should have following form for a point Cp:  
 
 
 CGAL::ORIGIN + ( (Cp - CGAL::ORIGIN) * xScale ) 
 
 
Global scale values defined as the number type NT1 which is used also by 
the point type K1::Point_3. This is required for necessary multiplications. 
With our test files 10000 was an optimized scale value. All WSS files are 
unproblematic processed with this value. Over limit is depend on used 
number type in kernel representation and has following form: 
 
 
 NT1 xScale  = NT1(10000); 
 NT1 xRescale  = NT1(0.0001); 

     
 
Therefore the conversion methods of Creator have a second Boolean 
argument named scaling. The default value of this argument is true. 
This means scale operations will be applied during conversions. If this value 
is false, then scale operations are skipped. This is necessary when we 
work with the objects, which are not created by the Creator.  
 
In conclusion, the Creator can automatically handle the above discussed 
additional operations in different kernel representations. The CGAL team 
has promised new constructors and more possibilities for the next release. 

3.3.2.3 Creating Polyhedrons 

Two different public methods are offered by the Creator for creating the 
CGAL::Polyhedron_3 objects:  
 
1. Creator::OFFtoPOLY(char* fname) 
 

This method offers the direct creations from OFF files. We use the name 
of these OFF files as a argument with this method. This method returns 
a CGAL::Polyhedron_3 object, which is created from given OFF file 
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with the help of standard input streams. Used OFF files here can be 
stored in previous sessions with the module Extractor as well as with the 
module Outer.  

 
2. Creator::buildPOLY()  
 

This method creates a polyhedron with the data stored in STL 
containers. This data is stored by Extractor during previous extractions. 
In this case, we use the incremental builder mechanism for creating 
polyhedrons. The CGAL::Polyhedron_incremental_builder_3 is an 
auxiliary class, which helps in creating polyhedral surfaces from points 
and facets. This mechanism is originally designed for working with data 
contents such as those of an OFF file with points and facets lists. This 
mechanism is rather suitable not only for our work but also for 
debugging during creations.  
 

In order to be able to use these techniques the following CGAL header files 
need to be included: 
 
 
#include <CGAL/Polyhedron_3.h> 
#include <CGAL/Polyhedron_incremental_builder_3.h> 
#include <CGAL/IO/Polyhedron_iostream.h> 
 

 
Technically, the class The CGAL::Polyhedron_incremental_builder_3 
allows modifying the half-edge data structure, which is used by a 
CGAL::Polyhedron_3 object. In order to make this modification, this class 
uses another helper class of the CGAL, which is called as 
CGAL::Modifier_base<R>. This helper class enables access to the 
internal representation R of any object. In our case, the internal 
representation of a CGAL::Polyhedron_3 object is a half-edge data 
structure, which is defined previously as HalfedgeDS.  
 
For using incremental builder mechanism, we need to describe a function 
object, which is derived from CGAL::Modifier_base<HalfedgeDS>. The 
CGAL::delegate() member function of a CGAL::Polyhedron_3 accepts 
this function object and calls its operator() with a reference to its 
internally used half-edge data structure. Therefore, we need to define an 
operator()also within this function object. The skeleton of this function 
object is described as follows: 
 
 
template <class HDS> 
class Builder:public CGAL::Modifier_base<HDS> { 

 



 96

public: 
      
  Builder(){} // constructor 
       
             void operator()( HDS& hds) { 
 
        // necessary definitions for incremental Builder.. 
 
      } 
 
};  
 
 
Before giving the necessary operator() definition for this mechanism, it 
is necessary to introduce the interface of this utility class 
CGAL::Polyhedron_incremental_builder_3. The following table  bases 
on the actual CGAL 3.1 documentation. The surface creation methods and 
some additional operations of this auxiliary class are summarized as the 
following: 
 
Surface Creation Methods 
void    B.begin_surface (   

size_type v, size_type f, size_type h= 0, 
int mode = RELATIVE_INDEXING) 

starts the construction. v is the number of new vertices to expect, f the number of new facets, and h 
the number of new halfedges. If h is unspecified (== 0) it is estimated using Euler's equation (plus 
5% for the so far unknown holes and genus of the object). These values are used to reserve space in 
the halfedge data structure hds. If the representation supports insertion these values do not restrict 
the class of constructible polyhedra. If the representation does not support insertion the object must 
fit into the reserved sizes. If mode is set to ABSOLUTE_INDEXING the incremental builder uses 
absolute indexing and the vertices of the old polyhedral surface can be used in new facets (needs 
preprocessing time linear in the size of the old surface). Otherwise RELATIVE_INDEXING is used 
starting with new indices for the new construction. 
 
Vertex_handle B.add_vertex(Point_3 p) adds a new vertex and returns its 

handle. 
Facet_handle B.begin_facet() starts a new facet and returns its 

handle. 
void   B.add_vertex_to_facet(size_type i) 
adds a vertex with index i to the current facet. The first point added with add_vertex() has the index 
0 if mode was set to RELATIVE_INDEXING, otherwise the first vertex in the referenced hds has the 
index 0.  
 
Halfedge_handle B.end_facet() 
ends a newly constructed facet. Returns the handle to the halfedge incident to the new facet that 
points to the vertex added first. The halfedge can be safely used to traverse the halfedge cycle 
around the new facet. 
 
void   B.end_surface() ends the construction. 

 
Additional operations 
 
template <class InputIterator>  Halfedge_handle   
B.add_facet(InputIterator first,InputIterator beyond) 
is a synonym for begin_facet(), a call to add_facet() for each value in the range [first,beyond), and a 
call to end_facet(). Returns the return value of end_facet(). Precondition: The value type of 
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InputIterator is std::size_t. All indices must refer to vertices already added.   
 
template <class InputIterator>  bool 
B.test_facet ( InputIterator first, InputIterator beyond)  
Returns true if a facet described by the vertex indices in the range [first,beyond) can be successfully 
inserted, e.g., with add_facet(first,beyond). Precondition: The value type of InputIterator is 
std::size_t. All indices must refer to vertices already added 
 
bool   B.check_unconnected_vertices() returns true if unconnected vertices 

are detected. If verbose was set to true (see the constructor above) debug 
information about the unconnected vertices is printed. 
 

bool   B.remove_unconnected_vertices() returns true if all unconnected 
vertices could be removed successfully. This happens either if no unconnected 
vertices had appeared or if the halfedge data structure supports the removal 
of individual elements. 
 

Vertex_handle  B.vertex(std::size_t i) returns handle for the vertex of index i, or 
Vertex_handle if there is no i-th vertex. 
 

void   B.rollback() undoes all changes made to the halfedge data structure 
since the last begin_surface() in relative indexing, and deletes the whole 
surface in absolute indexing. It needs a new call to begin_surface() to start 
inserting again. 
 

Bool B.error() returns error status of the builder.   
 
As seen in the table before, there are quite a lot of methods for testing, 
undoing, and checking. Therefore, Incremental Builder Mechanism offers 
good debug possibilities during the creations. We achieved the best format 
for storing our list points and list facets with the help of these methods. 
Since these lists have been already arranged to give the best results with 
the Incremental Builder, the last version of our implementation does not use 
all of the above functions. However, this extremely useful interface of the 
Incremental Builder is introduced with its all functions, which might be 
rather useful for future efforts. Since we have all facets counter-clockwise 
oriented in our lists, we can add the vertices and facets in a uncomplicated 
manner to the half-edged data structure. This process starts with the 
method CGAL::begin_surface() and ends with the method CGAL:: 
end_surface(). During this process, we use the method 
CGAL::add_vertex() for adding the points, and the method 
CGAL::add_facet() for adding the facets, as shown in the code below. 
This code gives the necessary operator() definition for our template 
Builder:  
 
 
void operator()( HDS& hds) { 
 
 int i; 
 Face tri; 
 
 int nop = points.size();  
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 int nof = facets.size(); 
   
 CGAL::Polyhedron_incremental_builder_3<HDS> PH(hds, true); 
                
   PH.begin_surface( nop, nof, 0);  
 
      for (i=0; i<nop; i++) 
    PH.add_vertex(points[i]); 
 
 for (i=0; i<nof; i++) { 
  tri=facets[i]; 
  PH.add_facet(tri.begin(), tri.end()); 
      } 
 
    PH.end_surface(); 
}        

 
As shown above, the CGAL::Polyhedron_incremental_builder_3 is 
instantiated within the scope of operator(). The constructor of this class 
is defined as follows: 
 
 
 Polyhedron_incremental_builder_3<HDS> B(HDS& hds, bool verbose = false); 

 
 
After instantiation, CGAL::Polyhedron_incremental_builder_3 stores 
a reference to the hds of a polyhedral surface in its internal state. An 
existing polyhedral surface in hds remains unchanged. The incremental 
builder appends the new polyhedral surface. The default value of verbose 
is false which means that there are no diagnostic messages. If verbose is 
true, diagnostic messages will be printed to std::cerr in case of 
malformed input data. 
 
The Builder template is instantiated within the scope of private method 
Creator::buildPolyhedron(): 
  
 
   Px.clear(); // clearing the actual Polyhedron_3 instance 
   Builder<HalfedgeDS> PHDS; // Get an instance for Builder 
   Px.delegate(PHDS); // delegation  
 
   Px.normalize_border(); // Reordering border edges 
 

 
As shown in the code above, first, a Builder template is instantiated. This 
instance is used by a polyhedron object Px with the member function 
CGAL::delegate(). After delegation, we have a polyhedron which its half-
edge data structure is created (modified) with the operator() of  Builder. 
The last necessary step is normalization of border edges. The normalization 
reorganizes the sequential storage of the edges such that the non-border 
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edges precede the border edges. Insert and delete operations on Half-edge 
data structure, change the border status of halfedges. Since this is not 
automatically updated by CGAL::Polyhedron_incremental_builder_3, 
member function CGAL::normalize_border() should be used after 
delegation. After this operation, our Polyhedron Px has correct surface 
structure, which can be used truthful in later steps. It is possible to test the 
validity of Px, with the methods of module Checker. 

3.3.2.4 Creating NEF-Polyhedrons 

As discussed in chapter 3.2.2.1, it is not possible to create Nef-polyhedrons 
directly from the points and facets. Therefore, some of the offered methods 
for creating Nef-Polyhedrons use the methods of Creator, which are used for 
creating Polyhedrons. Three different public methods are offered for 
creating polyhedrons:  
 
1. Creator::BuildNEF() 

 
This method offers the creations from the content of STL containers. It 
uses two steps for creating a Nef-Polyhedron:  
• Building a CGAL::Polyhedron_3 object via Creator:: 

BuildPOLY() with the data stored in STL containers;  
• Calling the method Creator::convertNEF() for converting the 

result object into a CGAL::Nef_polyhedron_3. 
 
2. Creator::OFFtoNEF(char* fname)  

 
This method offers the creations from OFF files. Used OFF files here can 
be stored in previous sessions with the module Extractor as well as with 
the module Outer. It uses also two steps for creating a Nef-Polyhedron:  
• Scanning a CGAL::Polyhedron_3 object via Creator:: 

OFFtoPOLY() from an externally stored OFF file;  
• Calling the method Creator::convertNEF() for converting the 

result object into a CGAL::Nef_polyhedron_3. 
 
3. Creator::NEF3toNEF(char* fname)  

 
This method offers the direct creations from NEF3 files. This method 
returns a CGAL::Polyhedron_3 object, which is created from given 
NEF3 file with the help of standard input streams. These NEF3 files 
here can be stored with the module Outer.  
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In order to be able to use these methods the following CGAL header files 
need to be included: 
 
 
#include <CGAL/Nef_polyhedron_3.h> 
#include <CGAL/IO/Nef_polyhedron_iostream_3.h> 
 

 
CGAL already offers the using of operators +,-,*,^ to applying Boolean set 
operations on created objects. Nevertheless, a method is also added to our 
object Creator for user convenience. This public method returns a 
CGAL::Nef_polyhedron_3, which contains the result of Boolean set 
operation between N1 and N2. This is useful for applying necessary Boolean 
set operations one by one into a loop. The method Creator::boolNEF() 
described as follows with the necessary enumeration: 
  
 
enum boolOP  { INT,UNI,SYM,D12,D21 }; // { * , + , ^ , N1-N2 , N2-N1 } 
 
Nef_polyhedron Creator::boolNEF( 
 Nef_polyhedron& N1,Nef_polyhedron& N2, boolOP op) 
 
 
A difference in our method is the result of operation regularized with the 
CGAL::Nef_polyhedron_3::regularization(). This method returns to 
the closure of the interior of a Nef-polyhedron. Regularized set operations 
are already discussed in CGAL chapter.  

3.3.3 Displayer 

The main job of module Displayer is viewing the created objects with the 
module Creator. Furthermore, Displayer describes also some methods for 
visual debugging. These methods could be used for viewing the data stored 
in STL containers as well as for displaying an OFF file directly.  
 
These following methods are provided by Displayer: 
 
1. Displayer::view(Polyhedron& Px) 

This method displays the Polyhedron Px, in geomview. 
 

2. Displayer::view(Nef_Polyhedron& NPx) 
This method displays the Nef-Polyhedron NPx, in a QT-Widget. 
 

3. Displayer::view_OFF(char* fname) 
This method displays an OFF file, in geomview. 
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4. Displayer::view_POINTS() 
This method displays the points from container points, in geomview. 
 

5. Displayer::view_FACETS() 
This method displays the facets from container facets, in geomview. 
 

6. Displayer::clear() 
This method clears the content of certain geomview stream. 

 
In order to be able to use these methods the following CGAL header files 
need to be included: 
 
 
#include <CGAL/IO/Geomview_stream.h> 
#include <CGAL/IO/Polyhedron_geomview_ostream.h> 
#include <CGAL/IO/Qt_widget_Nef_3.h> 
#include <qapplication.h> 
 

 
CGAL describe an iostream for Geomview to visualize some geometric 
objects such as points, lines, triangles etc. Displaying a polyhedron is also 
possible with the help of this stream. In second header file above defined 
also an output stream for CGAL::Polyhedron_3. Our methods described in 
Displayer, are used this stream to displaying points, triangles and 
polyhedrons. One stream is used for each instance of Displayer. Formally, a 
geomview stream gs is instantiated in followed form: 
 
 
 Geomview_stream gs (  Bbox_3 bbox = Bbox_3(0,0,0, 1,1,1), 
                       const char *machine = NULL, 
                       const char *login = NULL);  
  

 
Fig 3.5. The module Displayer. 
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This introduces a Geomview stream gs with a camera that sees the 
bounding box. The command geomview must be in the user's PATH. If 
machine and login are not NULL, Geomview is started on the remote 
machine using rsh. We are instantiated this streams in our implementation 
with default values. The relevant dialogs of Geomview are illustrated in the 
Figure 3.6.  

 
 
As seen in figure 3.6, this visualization tool has mainly three components for 
displaying geometric objects: Tools, Main Window and Camera view. The 
Tools provides basic translations on geometric objects. The Main Window 
has a list of objects in Targets section. This section makes possible to 
modifying the attributes of selected object individually. If the item World is 
selected, then all objects are affected from modifications. Objects are 
displayed in Camera view.    

Fig 3.6. The relevant dialogs of Geomview. 
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The Appearance dialog helps you to make the modifications such as colour 
and line widths. In addition, some results of the Boolean set operations 
contain some facets on the surface, which are not convex. These concave 
facets are giving some problems in visualization. The Concave switch in 
Appearance dialog solves this problem. Fig. 3.7 illustrates an example 
surface, which contains some concave facets. As seen below, the enabling of 
Concave switch shows the object with right facets. 

After the instantiation, this stream can easily used for displaying the 
desired object: 
  
 
 gs << CGAL::GREEN << Px; 
 

 
Some of the useful commands to manipulate this stream were liste here. 
 
Color  gs.set_bg_color (Color c) Changes the background color. Returns the old 

value. 
Color   gs.set_vertex_color(Color c) Changes the vertex color. Returns the old value 
Color   gs.set_edge_color(Color c) Changes the edge color. Returns the old value.   
Color   gs.set_face_color(Color c) Changes the face color. Returns the old value.   
void   gs.clear() Deletes all objects. 
void  gs.look_recenter() Positions the camera in a way that all objects 

can be seen.   
int   gs.get_line_width() Returns the line width. 
int   
 

gs.set_line_width(int w) Sets the line width to w. Returns the previous 
value. 

bool   gs.get_wired() Returns true iff wired mode is on. 
bool   gs.set_wired(bool b) Sets wired mode. In wired mode, some 

structures output only there edges, not there 
surfaces. Returns the previous value. By default, 
wired mode is off. 

 

 
Fig 3.7. Concave switch of Geomview. 
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An object of the class CGAL::Color is a color available for drawing 
operations in CGAL output streams. Each color is defined by a triple of 
integers (r,g,b) with 0 , , 255r g b≤ ≤ , the so-called rgb-value of the color. 
Some constants are also predefined such as CGAL::BLACK or CGAL::WHITE. 
 
To displaying a NEF-Polyhedron, it is not possible to using Geomview. 
Therefore, we are used QT-Widget mechanism to displaying Nef-
Polyhedrons. The class CGAL::Qt_widget_Nef_3 uses the OpenGL 
interface of Qt to display a CGAL::Nef_polyhedron_3. The atom of the Qt 
user interface is called widget. A widget receives mouse, keyboard and other 
events from the window system, and paints a representation of itself on the 
screen. You can find more details in [Wr06]. Its purpose to provide an easy 
to use viewer for CGAL::Nef_polyhedron_3. User can access the all 
options to modifying viewed objects via the right mouse button such as 
rotating, scaling etc. In Fig 3.8 are illustrated all available options. 

This widget mechanism can be used to displaying a 
CGAL::Nef_polyhedron_3 in following form: 
 
 
   typedef CGAL::Qt_widget_Nef_3<Nef_polyhedron>   QTNef; 
 
   Nef_polyhedron NPx; 
   QTNef* widget = new QTNef(NPx); 
 
   QApplication app(argc,argv);  
   app.setMainWidget(widget);  
   widget->show(); 
 
   app.exec(); 
 

 
Fig 3.8. The QT-Widget viewer. 
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As seen above, before the instantiation of a widget, the class 
CGAL::Qt_widget_Nef_3 is parameterized with the Nef_polyhedron, 
which is contained certain kernel representation of Nef-polyhedrons. 
Instantiated widget for Nef-Polyhedron NPx is used as main widget in the 
instance of QApplication. The method QApplication::exec() executes 
an application who shows initially the main widget.  
 
The figure 3.9 shows the results of the different methods of Displayer on 
same object. The small windows on the bottom-right of windows truncated 
from the related object lists in targets section of Geomview.  It is possible to 
find each point/triangle of related object with the help of these lists. 

 
Fig 3.9. The methods of Displayer. 
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3.3.4 Outer 

The module Outer gives outputs from created objects in different file 
formats. In order to make this, the Outer uses the output streams, which are 
already defined by CGAL.  
 

 
The module Outer provides following public methods: 
 
1. Outer::OFF(Polyhedron& Px, char* fname) 

 
This method writes out an OFF file from polyhedron Px. The standard 
output streams are used to writing OFF files. The extension ".OFF" is 
added into the name of created file. 
 

2. Outer::VRML1(Polyhedron& Px, char* fname) 
 
This method writes out a VRML 1.0 file from the polyhedron Px. The 
stream CGAL::VRML_1_ostream is used to writing this file. The 
extension ".VRML1" is added into the name of created file. 
 

3. Outer::VRML2(Polyhedron& Px, char* fname) 
 
This method writes out a VRML 2.0 file from the polyhedron Px. The 
stream CGAL::VRML_2_ostream is used to writing this file. The 
extension ".VRML2" is added into the name of created file. 
 

4. Outer::OBJ(Polyhedron& Px, char* fname) 

 
 

Fig 3.11. The module Outer. 
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This method writes out a Wavefront object file from the polyhedron Px. 
The method CGAL::print_wavefront() is used with the standard 
output streams to writing this file. The extension ".OBJ" is added into the 
name of created file. 
 

5. Outer::IV(Polyhedron& Px, char* fname) 
 
This method writes out a Open Inventor file from the polyhedron Px. The 
stream CGAL::Inventor_ostream is used to writing this file. The 
extension ".IV" is added into the name of created file. 
  

6. Outer::NEF3(Nef_polyhedron& NPx, char* fname) 
 
This method writes an NEF3 file from the NEF-polyhedron NPx. The 
standard output streams are used to writing NEF3 files. The extension 
".NEF3" is added into the name of created file. 

 
In order to be able to use these methods the following CGAL header files 
need to be included: 
 
 
 #include <CGAL/IO/Polyhedron_iostream.h> 
 #include <CGAL/IO/Nef_polyhedron_iostream_3.h> 
 #include <CGAL/IO/Polyhedron_inventor_ostream.h> 
 #include <CGAL/IO/Polyhedron_VRML_1_ostream.h> 
 #include <CGAL/IO/Polyhedron_VRML_2_ostream.h> 
 #include <CGAL/IO/print_wavefront.h> 
 

 
As seen above, the methods of Outer for writing polyhedrons are used output 
streams, which are defined by CGAL. These streams convert internally the 
coordinates of points into double coordinates during the writing files. It is 
not possible to get a file from polyhedrons with the certain kernel 
representation. Therefore, we are described an additional template for 
writing a polyhedron in certain kernel representation. This template is 
added to the header file, namely outer.h, which contains the module 
Outer. The interface of this template described as follows: 
 
 
 template <class Poly> void write_OFF(char* fname, const Poly& P); 
 

 
This method can be used as follows in any session, which the header file 
outer.h included: 
 
 
 write_OFF<Polyhedron>(filename, Px); 
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In order to accessing the points and facets of a polyhedron, we are used 
following iterators and also a circulator: 
 
 
    typedef typename Poly::Vertex_const_iterator                  VCIt; 
    typedef typename Poly::Facet_const_iterator                   FCIt; 
    typedef typename Poly::Halfedge_around_facet_const_circulator HFCCirc; 

 
 
This method first access the points of a polyhedron via 
CGAL::Polyhedron_3::Vertex_const_iterator. The received 
coordinates of points with the help of this iterator, are stored into an std:: 
ofstream : 
 
 
    // Writing Points 
    for( VCIt vi = Px.vertices_begin(); vi != Px.vertices_end(); ++vi) { 
 out << vi->point().x() << " ";  
 out << vi->point().y() << " "; 
 out << vi->point().z() << "\n"; 
    } 
 
 
As second step, it access the facets of polyhedron via 
CGAL::Polyhedron_3:: Facet_const_iterator. The points of received 
facets are visited with the help of CGAL::Polyhedron_3:: 
Halfedge_around_facet_const_circulator. To find the number of 
vertices in certain facet are used the function CGAL::circulator_size(). 
To find the order of points are used std::distance() algorithm.  
                
 
    // Writing Facets 
    for ( FCIt fi = Px.facets_begin(); fi != Px.facets_end(); ++fi) { 
 
         HFCCirc HFc = fi->facet_begin(); 
 
         out << CGAL::circulator_size(HFc) << ' '; 
 
         do { out << ' '  
                  out << std::distance(Px.vertices_begin(), HFc->vertex()); 
         } while ( ++HFc != fi->facet_begin()); 
 
         out << std::endl; 
    } 

 
 
Since the points are rot from polyhedrons in original kernel representation, 
our template Write_OFF<Polyhedron> is guaranteed the original 
coordinates of points in the output. This method is also useful for debugging.
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3.3.5 Checker 

The module Checker gives the possibility to the user, for checking created 
objects with the module Creator. These methods are not only for checking 
the validity of created objects, but they also give the significant information 
about desired object.  
 
The methods of Checker use the predicates of related object to access 
required information. The default output stream is std::cout, which the 
results of the predicates are written. Hovewer user can give any standard 
output stream for outputs. 
 

 
The module Checker provides two public methods: 
 
1. Checker::CheckOut(Polyhedron& Px, ostream& out = std::cout) 
 
This method checks the Polyhedron Px, and, writes the results into 
standard output stream out. The default output stream is std::cout.  
 
By checking of a polyhedron, following information is displayed: 

 
 
[Info_POLY]: 
---------------- 
 VALIDITY : [4] The level of validity 
 CLOSED   : [1] is closed ? 
 TRIANGLES: [1] are all facets triangles? 
 ALLOCATED: [10.8438 Kb] the size of the polyhedron 
 |V|   = 53 number of vertices 
 |F|   = 102 number of facets 
 |He|  = 306 number of half-edges 
---------------- 
 

 

 
 

Fig 3.10. The module Checker. 
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2. Checker::CheckOut(Nef_polyhedron& NPx, ostream& out= std::cout) 
 
This method checks the Nef-Polyhedron NPx, and, writes the results into 
standard output stream out. The default output stream is std::cout. 
Following information is displayed: 

 
 
[Info_NEF]: 
---------------- 
 VALIDITY  : [OK]    is valid? 
 2-MANIFOLD: [1]    is simple? 
 ALLOCATED : [4.51562 Kb]  the size of the nef polyhedron 
 |V|  = 8     number of vertices 
 |F|  = 6     number of facets 
 |He| = 24     number of half-edges 
 |E|  = 12     number of edges 
 |Hf| = 12     number of half-facets 
 |Vol|= 2     number of volumes 
---------------- 
 

 
CGAL describes some combinatorial predicates to test the surface structure 
as well as some functions to give the information about data structure. Our 
methods display the results of this member functions. Used member 
functions and explanations of them are summarized here.  
 
To check the polyhedrons following member functions of 
CGAL::Polyhedron_3: are used  
  

Return type Function Explanation 
bool P.is_valid() Checks the integrity of P. 
bool   P.empty() Returns true if P is empty. 
bool P.is_closed() Returns true if there are no border edges. 
bool P.is_pure_triangle() Returns true if all facets are triangles. 
size_type P.size_of_vertices() Returns the number of vertices.   
size_type P.size_of_halfedges() Returns the number of halfedges (inclusive border 

halfedges). 
size_type P.size_of_facets() Returns the number of facets. 
size_t P.bytes() Returns the bytes used for the polyhedron. 

 
For checking the integrity of a polyhedron, the member function CGAL:: 
Polyhedron_3::is_valid() is used. This method checks the validity of 
half-edge data structure. It returns true if the polyhedral surface is 
combinatorial consistent: 
 
 
 bool  Px.is_valid ( bool verbose = false, int level = 0) 
 

 



 111 

Our method tests the requested CGAL::Polyhedron_3 object with the 
help of this member function, and, displays the level of validity. If  verbose 
is true, statistics are printed to std::cerr. The argument level contains 
a value between 0 and 4. Level 0 is a complete test for internal incidencies. 
Level 1 to 4 some additional checks to Level 0.  The tests made for each level 
summarized here [Cd01] : 
 
Level 0 : The number of halfedges is even. All pointers except the vertex pointer and the face 
pointer for border halfedges are unequal to their respective default construction value.  
 
• For all halfedges h: The opposite halfedge is different from h and the opposite of the 

opposite is equal to h. The next of the previous halfedge is equal to h.  
• For all vertices v: the incident vertex of the incident halfedge of v is equal to v. The 

halfedges around v starting with the incident halfedge of v form a cycle.  
• For all faces f: the incident face of the incident halfedge of f is equal to f. The halfedges 

around f starting with the incident halfedge of f form a cycle.  
 
Level 1 : All tests of level 0. For all halfedges h: The incident vertex of h exists and is equal 
to the incident vertex of the opposite of the next halfedge. The incident face (or hole) of h is 
equal to the incident face (or hole) of the next halfedge. 
  
Level 2 : All tests of level 1. The sum of all halfedges that can be reached through the 
vertices must be equal to the number of all halfedges, i.e., all halfedges incident to a vertex 
must form a single cycle.  
 
Level 3 : All tests of level 2. The sum of all halfedges that can be reached through the faces 
must be equal to the number of all halfedges, i.e., all halfedges surrounding a face must 
form a single cycle (no holes in faces). 
  
Level 4 : All tests of level 3 and run also method CGAL::normalized_ 
border_is_valid. This method returns true if the border halfedges are in normalized 
representation, which is when enumerating all halfedges with the halfedge iterator the 
following holds: The non-border edges precede the border edges. For border edges, the second 
halfedge is a border halfedge. (The first halfedge may or may not be a border halfedge.) The 
halfedge iterator CGAL::border_halfedges_begin() denotes the first border edge. 
 
For checking the Nef-polyhedrons following member functions of 
CGAL::Nef_Polyhedron_3: are used. 
 

Return type Function Explanation 
bool   NP.is_valid() checks the integrity of NP . 
bool NP.is_empty() returns true if NP  is empty. 
bool   NP.is_simple() returns true, if NP  is a 2-manifold.   
size_type NP.number_of_vertices() Returns the number of vertices. 
size_type NP.number_of_edges() Returns the number of edges. 
size_type NP.number_of_facets() Returns the number of facets. 
size_type NP.number_of_volumes() Returns the number of volumes. 
size_type NP.number_of_halffacets() Returns the number of halffacets. 
size_type NP.number_of_halfedges() Returns the number of halfedges. 
size_t NP.bytes() Returns the bytes used for the Nef- polyhedron. 
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3.3.6 Header Files and Globals 

In order to response the demands of different kinds of applications; we are 
defined an extra header file, namely globals.h. This header file contains 
the necessary header files of libraries, which are used in our 
implementation. The global type definitions and variables are also added 
the end of this file. User can define session specific requirements in this file. 
This file should be included in each session which is used our interface. 
Other modules can work with the definitions, which are contained by this 
header file. In short, globals.h pre-defines the variable content, which is 
according to session requirements.  
 
This file must have the include definitions for following C++ standard 
header files: 
 
 
<iostream>, <fstream>, <vector>, <algorithm>, <stdlib.h> 
 
 
To work regular with our interface, following CGAL header files must be 
included. This header files are necessary to using our implementations: 
 
 
<CGAL/Cartesian.h> 
<CGAL/Homogeneous.h> 
 
<CGAL/Polyhedron_3.h> 
<CGAL/Nef_polyhedron_3.h> 
<CGAL/Polyhedron_incremental_builder_3.h> 
 
<CGAL/IO/Polyhedron_iostream.h> 
<CGAL/IO/Nef_polyhedron_iostream_3.h> 
 
  
Since they provide module specific requirements, some of the header files 
can be excluded. These files are required only in some sessions in which are 
used related module. Following WSS header files are necessary, when the 
module Extractor is used in a session: 
 
 
 <wssreader.hh>, <waf_config.hh>, <wafertools.hh> 
 

 
Following header files are necessary, when the module Displayer is used in 
a session: 
 
 
<CGAL/IO/Geomview_stream.h> 
<CGAL/IO/Polyhedron_geomview_ostream.h> 
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<CGAL/IO/Qt_widget_Nef_3.h> 
<qapplication.h> 
 
 
Following CGAL header files are necessary, when the module Outer is used 
in a session: 
 
 
<CGAL/IO/Polyhedron_inventor_ostream.h> 
<CGAL/IO/Polyhedron_VRML_1_ostream.h> 
<CGAL/IO/Polyhedron_VRML_2_ostream.h> 
<CGAL/IO/print_wavefront.h> 
 
 
Furthermore, the necessary header files for selected kernel representation 
(of Polyhedron and Nef-polyhedron) should be included too. Some of them 
are listed here: 
 
 
<CGAL/Gmpz.h> 
<CGAL/Gmpq.h> 
<CGAL/Quotient.h> 
<CGAL/MP_Float.h> 
<CGAL/Exact_predicates_exact_constructions_kernel.h> 
 
 
After the include definitions of header files, global.h contains the 
necessary type definitions. These type definitions allow the ordinary use of 
interface requirements.  
 
 
// Number Types 
typedef CGAL::Gmpq      NT1; 
typedef CGAL::Gmpz      NT2; 
 
// Kernel representations 
typedef CGAL::Cartesian<NT1>     K1; 
typedef CGAL::Homogeneous<NT2>          K2; 
 
// Containers 
typedef std::vector<K1::Point_3>    PointList; 
typedef std::vector<int>      Face; 
typedef std::vector<Face>     FaceList; 
 
// Polyhedral structures 
typedef CGAL::Polyhedron_3<K1>           Polyhedron; 
typedef Polyhedron::HalfedgeDS            HalfedgeDS; 
typedef CGAL::Polyhedron_3<K2>           Polyhedron_K2; 
typedef CGAL::Nef_polyhedron_3<K2>       Nef_polyhedron; 
 

 
The number types and kernel representations can be modified under the 
considerations, which are discussed in chapter 3.2.2.2. For usual 
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applications, the part containers and polyhedral structures should not be 
modified. These definitions are already optimized for better solution. 
 
The last part of global.h contains the global variables, which are used by 
the modules. These global variables defined as follows: 
 
 
PointList    points; 
FaceList   facets; 
 
NT1    xScale  = NT1(10000); 
NT1    xRescale  = NT1(0.0001); 
 
enum     boolOP   { INT,UNI,SYM,D12,D21 }; 
 
bool     xVerbose  = false; 
 
 
The global lists points and facets are our STL containers. These 
containers are used with all modules except the module Outer. All modules 
can access the data coming from last extraction, with the help of these 
global containers. 
 
As discussed in chapter 3.3.2.2, the global variables xScale and xRescale 
are used in conversions between polyhedrons and Nef-Polyhedrons. The 
enumeration type boolOP are used to denote the name of desired Boolean 
set operations. This is also discussed in chapter 3.3.2.4. These globals are 
used only with the methods of the module Creator. 
 
The global xVerbose provides the debugging mode with our interface. The 
default value is false. This means no diagnostic messages. Otherwise, 
when xVerbose is true, user can trace related diagnostic messages from 
std::cerr. This variable affects the following methods of our interface: 
 

• Creator::buildPOLY() 
• Creator::buildNEF() 
• Creator::OFFtoPOLY() 
• Creator::OFFtoNEF() 
• Checker::CheckOUT() 
• Displayer::view_OFF() 
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3.4 Using of the Interface 

As discussed previously, for processing the WSS data files with our interface 
we  have defined six header files. With the modules defined in these header 
files, is possible to apply the Boolean set operations on 3D-solid objects. 
These objects are created from the surfaces of wafer components, which are 
received from WSS data files. The modules create CGAL polyhedral 
structures on which are possible to apply Boolean set operations. The 
modules allow also additional facilities: displaying, debugging and outputs 
in different file formats.  
 
In this section, we want to give some examples about the using of our 
interface for diverse purposes. We want to start with the initial 
requirements of each kinds of session.  
 
Since it contains the basic requirements, the header file globals.h is 
must be included in each session. Other header files are optional; we can 
include them when necessary. These include definitions should be at the 
start of the code: 
  
 
#include <globals.h> 
#include <extractor.h> 
#include <creator.h> 
#include <displayer.h> 
#include <checker.h> 
#include <outer.h> 
  
  
In general, we need some variables to store the created objects. Therefore, 
as a second step, we should define these variables, which are contained 
polyhedrons and Nef-Polyhedrons. In order to make this, there is no 
limitation. User can store this objects such as follows in arrays as well as in 
different kind of STL containers. It depends on the kind of application, 
which data structure is better to store this objects.  
 
 
 Polyhedron    P[3], Q; 
 Nef_polyhedron   NP[3], NQ; 
 
 std::vector<Polyhedron>  P; 
 std::list<Nef_polyhedron>  NP; 
 
 
To assume, we want to make an intersection operation between two wafer 
components, and, we want to display the result of operation. In this session, 
we need only following definition: 
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      Nef_polyhedron  NP[3]; 
 
      Extractor  WSS0("file0.wss"), WSS1("file1.wss"); 
      Creator  CRE; 
      Displayer VIS; 
 
      WSS0.extract(); NP[0]=CRE.buildNEF(); 
      WSS1.extract(); NP[1]=CRE.buildNEF(); 
 
      NP[2] = NP[0] * NP[1]; // intersection 
 
      VIS.view(NP[2]); 
 

 
And now, we want to some outputs in different file formats. In this case we 
need an instance from the module Outer: 
 
 
 Outer   OUT; 
 

Polyhedron  P = CRE.convertPOLY(NP[2]); 
 
VIS.view(P); // Display the result in geomview. 
 

 OUT.OFF(P, "result");  
OUT.IV(P, "result");  
OUT.VRML1(P, "result"); 

 

 
When we want to check our creations, we need an instance of Checker. 
 

 
Checker  CHK; 
 
for (int i=0; i<3; i++)  

               CHK.checkOut(NP[i]); 
 
 CHK.checkOut(P); 
 

 
Assume that, we have a WSS data file, which contains multiple segments. 
And we want to extract each segment of this file, but we want to process 
these extractions in later sessions. Now, we want to display the extractions.  
 

 
Extractor  WSS("multi.wss"); 
Displayer  VIS; 
 
Polyhedron   P; 
char         fname[12]; 
 
int          nos = WSS.getNOS(); // get the number of segments 
  
for (int seg=0; seg<nos; seg++) { 
 

           WSS.extract(seg); 
           sprintf(fname, "seg#0%d.OFF",seg);  
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           WSS.buildOFF(fname); 
           VIS.view_OFF(fname); 
 
       } 
 

 
Of course, this technique can be used in ever session, which needs to process 
multiple files. In order to make this, the filenames should have same prefix 
or postfix. It is easy to use in a loop when the filenames are numbered 
sequentially.  The stored segments above can be used for creating nef 
polyhedrons in another session. In this session, it is not necessary to include 
Extractor. In other words, we don't need anymore WSS I/O interface. 
Therefore, this technique is more cost-efficient. To assume that, we have 
write nos segment in the session above: 
 
 
      Creator  CRE; 
 
      std::vector<Nef_polyhedron> Nefs; 
 

for (int seg=0; seg<nos; seg++) { 
           sprintf(fname, "seg#0%d.OFF",seg);  
           Nefs.push_back(CRE.OFFtoNEF(fname));    
       } 
 

 
To assume that, we have a vector container Nefs . This container contains 
some Nef polyhedrons, which are previously created with our interface. We 
want to see the union of all objects, which are stored within this container. 
Then we want to see the intersection, difference, etc. We want to display the 
Nef-results. We should write out these results as Wavefront object files. 
Furthermore, we want to check the results before these outputs.  
 
 
      Creator  CRE; 
      Displayer  VIS; 
      Outer  OUT; 
      Checker  CHK; 
 
      Nef_polyhedron   Result; 
      Polyhedron    P; 
      char           fname[8]; 

 
for (int j=0; j< 5; j++) { // five Boolean set operation 
 
 Result.clear(); 
 
 for (int i=0; i< Nefs.size(); i++)  // for each object  

           Result = CRE.boolNEF(Result, Nefs[i], boolOP(j));    
 
   VIS.view(Result); 
   P = CRE.convertPOLY(Result); // necessary for output 
   CHK.checkout(P); 
 
         sprintf(fname, "bool#0%d ",j); 
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   OUT.OBJ(P,fname); 
 
       } 
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Chapter 4 
 

Results and Outputs 

 
 

 
 

Information's pretty thin stuff unless mixed with experience. 
  

Clarence Day 
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Chapter 4 

4. Results and Outputs 
The above-mentioned modules were implemented and tested in an Acer 
Travelmate 290 notebook computer with an Intel Pentium ® M Processor 
(Centrino) at 1.5 GHz and 512 Mb RAM. The following is the software 
configuration used with the operating system Suse Linux 9.3: 
 

• CGAL 3.1 
• Geomview 1.8.1-4-i386 
• Trolltech QT-X11-Free 3.3.3 
• GMP 4.1.4 

 
Following the installation of the CGAL 3.1, the necessary WSS header files 
and libraries were transferred into the CGAL's include and lib directories.  
A modified makefile was created for the adoption of the WSS, which can be 
found in appendices. This modified makefile includes the standard CGAL 
make-file internally.  
 
For testing our programming interface, ten different WSS data files were 
used. These files were numbered between W0 and W9. In case of WSS data 
files with multiple segments, the segements were indicated as postfixes. For 
instance, W0.1 refers to the first segment of the W0. This notation was used 
in all tables. The kernel representation and global definitions used for 
receiving these test results are as follows: 
 
 
// Number Types 
typedef CGAL::Gmpq      NT1; 
typedef CGAL::Gmpz      NT2; 
 
// Kernels 
typedef CGAL::Cartesian<NT1>     K1; 
typedef CGAL::Homogeneous<NT2>           K2; 
 
// Global values 
NT1  xScale  = NT1(10000); 
NT1  xRescale  = NT1(0.0001); 
bool   xVerbose  = false; 
 
 
Objects created from the WSS data files and their related properties are 
summarized in following list. Items shown in this list were generated with 
the help of the modules Displayer and Checker. Meanings of the outputs 
generated by the module Checker have already been explained earlier in the 
chapter 3.3.5: 
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 POLYHEDRON NEF POLYHEDRON 

Name view(P) checkOut(P) view(NP) CheckOut(NP) 

Test File : wafer0.wss Number of segments: 3

 
W0 

 

 
VALIDITY : [4] 
CLOSED   : [1] 
TRIANGLES: [1] 
ALLOCATED: [10.8438 Kb] 
 
 |V|   = 53 
 |F|   = 102 
 |He|  = 306 

 
VALIDITY  : [OK] 
2-MANIFOLD: [1] 
ALLOCATED : [4.51562 Kb] 
 
 |V|  = 8 
 |F|  = 6 
 |He| = 24 
 |E|  = 12 
 |Hf| = 12 
 |Vol|= 2 
 

 
W0.0 

 

 
VALIDITY : [4] 
CLOSED   : [1] 
TRIANGLES: [1] 
ALLOCATED: [5.57031 Kb] 
 
 |V|   = 28 
 |F|   = 52 
 |He|  = 156 

 
VALIDITY  : [OK] 
2-MANIFOLD: [1] 
ALLOCATED : [4.51562 Kb] 
 
 |V|  = 8 
 |F|  = 6 
 |He| = 24 
 |E|  = 12 
 |Hf| = 12 
 |Vol|= 2 

W0.1 

 

 
VALIDITY : [4] 
CLOSED   : [1] 
TRIANGLES: [1] 
ALLOCATED: [5.78125 Kb] 
 
 |V|   = 29 
 |F|   = 54 
 |He|  = 162 

 
VALIDITY  : [OK] 
2-MANIFOLD: [1] 
ALLOCATED : [4.51562 Kb] 
 
 |V|  = 8 
 |F|  = 6 
 |He| = 24 
 |E|  = 12 
 |Hf| = 12 
 |Vol|= 2 

W0.2 

 

 
VALIDITY : [4] 
CLOSED   : [1] 
TRIANGLES: [1] 
ALLOCATED: [5.99219 Kb] 
 
 |V|   = 30 
 |F|   = 56 
 |He|  = 168 

 
VALIDITY  : [OK] 
2-MANIFOLD: [1] 
ALLOCATED : [4.51562 Kb] 
 
 |V|  = 8 
 |F|  = 6 
 |He| = 24 
 |E|  = 12 
 |Hf| = 12 
 |Vol|= 2 

Test File : wafer1.wss Number of segments: 1

W1 

 

 
VALIDITY : [4] 
CLOSED   : [1] 
TRIANGLES: [1] 
ALLOCATED: [5.99219 Kb] 
 
 |V|   = 30 
 |F|   = 56 
 |He|  = 168 

 
VALIDITY  : [OK] 
2-MANIFOLD: [1] 
ALLOCATED : [22.4609 Kb] 
 
 |V|  = 30 
 |F|  = 36 
 |He| = 128 
 |E|  = 64 
 |Hf| = 72 
 |Vol|= 2 

Test File : wafer2.wss Number of segments: 1
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W2 

 

 
VALIDITY : [4] 
CLOSED   : [1] 
TRIANGLES: [1] 
ALLOCATED: [9.78906 Kb] 
 
 |V|   = 48 
 |F|   = 92 
 |He|  = 276 

 
VALIDITY  : [OK] 
2-MANIFOLD: [1] 
ALLOCATED : [8.82812 Kb] 
 
 |V|  = 16 
 |F|  = 10 
 |He| = 48 
 |E|  = 24 
 |Hf| = 20 
 |Vol|= 2 

Test File : wafer3.wss Number of segments: 1

W3 

 

 
VALIDITY : [4] 
CLOSED   : [1] 
TRIANGLES: [1] 
ALLOCATED: [8.10156 Kb] 
 
 |V|   = 40 
 |F|   = 76 
 |He|  = 228 

 
VALIDITY  : [OK] 
2-MANIFOLD: [0] 
ALLOCATED : [12.6797 Kb] 
 
 |V|  = 20 
 |F|  = 18 
 |He| = 70 
 |E|  = 35 
 |Hf| = 36 
 |Vol|= 2 

Test File : wafer4.wss Number of segments: 1

W4 

 

 
VALIDITY : [4] 
CLOSED   : [1] 
TRIANGLES: [1] 
ALLOCATED: [15.6953 Kb] 
  
 |V|   = 76 
 |F|   = 148 
 |He|  = 444 

 
VALIDITY  : [OK] 
2-MANIFOLD: [1] 
ALLOCATED : [8.82812 Kb] 
 
 |V|  = 16 
 |F|  = 10 
 |He| = 48 
 |E|  = 24 
 |Hf| = 20 
 |Vol|= 2 

Test File : wafer5.wss Number of segments: 1

W5 

 

 
VALIDITY : [4] 
CLOSED   : [1] 
TRIANGLES: [1] 
ALLOCATED: [12.0781 Kb] 
 
 |V|   = 57 
 |F|   = 114 
 |He|  = 342 

 
VALIDITY  : [OK] 
2-MANIFOLD: [0] 
ALLOCATED : [8.875 Kb] 
 
 |V|  = 16 
 |F|  = 10 
 |He| = 48 
 |E|  = 24 
 |Hf| = 20 
 |Vol|= 2 

Test File : wafer6.wss Number of segments: 2

W6 

 

 
VALIDITY : [4] 
CLOSED   : [1] 
TRIANGLES: [1] 
ALLOCATED: [9.36719 Kb] 
 
 |V|   = 46 
 |F|   = 88 
 |He|  = 264 

 
VALIDITY  : [OK] 
2-MANIFOLD: [1] 
ALLOCATED : [8.82812 Kb] 
 
 |V|  = 16 
 |F|  = 10 
 |He| = 48 
 |E|  = 24 
 |Hf| = 20 
 |Vol|= 2 

W6.0 

 

 
VALIDITY : [4] 
CLOSED   : [1] 
TRIANGLES: [1] 
ALLOCATED: [7.67969 Kb] 
 
 |V|   = 38 
 |F|   = 72 
 |He|  = 216 

 
VALIDITY  : [OK] 
2-MANIFOLD: [1] 
ALLOCATED : [4.51562 Kb] 
 
 |V|  = 8 
 |F|  = 6 
 |He| = 24 
 |E|  = 12 
 |Hf| = 12 
 |Vol|= 2 
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W6.1 

 

 
VALIDITY : [4] 
CLOSED   : [1] 
TRIANGLES: [1] 
ALLOCATED: [3.03906 Kb] 
 
 |V|   = 16 
 |F|   = 28 
 |He|  = 84 

 
VALIDITY  : [OK] 
2-MANIFOLD: [1] 
ALLOCATED : [4.51562 Kb] 
 
 |V|  = 8 
 |F|  = 6 
 |He| = 24 
 |E|  = 12 
 |Hf| = 12 
 |Vol|= 2 

Test File : wafer7.wss Number of segments: 2

W7 

 

 
VALIDITY : [4] 
CLOSED   : [1] 
TRIANGLES: [1] 
ALLOCATED: [183.18 Kb] 
 
 |V|   = 870 
 |F|   = 1736 
 |He|  = 5208 

 
VALIDITY  : [OK] 
2-MANIFOLD: [1] 
ALLOCATED : [486.699 Kb] 
 
 |V|  = 573 
 |F|  = 843 
 |He| = 2828 
 |E|  = 1414 
 |Hf| = 1686 
 |Vol|= 2 

W7.0 

 

 
VALIDITY : [4] 
CLOSED   : [1] 
TRIANGLES: [1] 
ALLOCATED: [191.828 Kb] 
 
 |V|   = 911 
 |F|   = 1818 
 |He|  = 5454 

 
VALIDITY  : [OK] 
2-MANIFOLD: [1] 
ALLOCATED : [478.598 Kb] 
 
 |V|  = 555 
 |F|  = 839 
 |He| = 2784 
 |E|  = 1392 
 |Hf| = 1678 
 |Vol|= 2 

W7.1 

 

 
VALIDITY : [4] 
CLOSED   : [1] 
TRIANGLES: [1] 
ALLOCATED: [336.953 Kb] 
 
 |V|   = 1599 
 |F|   = 3194 
 |He|  = 9582 

 
VALIDITY  : [OK] 
2-MANIFOLD: [1] 
ALLOCATED : [960.781 Kb] 
 
 |V|  = 1120 
 |F|  = 1676 
 |He| = 5588 
 |E|  = 2794 
 |Hf| = 3352 
 |Vol|= 2 

Test File : wafer8.wss Number of segments: 3

W8 

 

 
VALIDITY : [4] 
CLOSED   : [1] 
TRIANGLES: [1] 
ALLOCATED: [307 Kb] 
 
 |V|   = 1457 
 |F|   = 2910 
 |He|  = 8730 

 
VALIDITY  : [OK] 
2-MANIFOLD: [1] 
ALLOCATED : [715.031 Kb] 
 
 |V|  = 758 
 |F|  = 1337 
 |He| = 4186 
 |E|  = 2093 
 |Hf| = 2674 
 |Vol|= 2 

W8.0 

 

 
VALIDITY : [4] 
CLOSED   : [1] 
TRIANGLES: [1] 
ALLOCATED: [393.484 Kb] 
 
 |V|   = 1867 
 |F|   = 3730 
 |He|  = 11190 

 
VALIDITY  : [OK] 
2-MANIFOLD: [1] 
ALLOCATED : [17.4531 Kb] 
 
 |V|  = 32 
 |F|  = 18 
 |He| = 96 
 |E|  = 48 
 |Hf| = 36 
 |Vol|= 2 



 124 

W8.1 

 

 
VALIDITY : [4] 
CLOSED   : [1] 
TRIANGLES: [1] 
ALLOCATED: [677.641 Kb] 
 
 |V|   = 3203 
 |F|   = 6426 
 |He|  = 19278 

 
VALIDITY  : [OK] 
2-MANIFOLD: [1] 
ALLOCATED : [1369.74 Kb] 
 
 |V|  = 1554 
 |F|  = 2430 
 |He| = 7988 
 |E|  = 3994 
 |Hf| = 4860 
 |Vol|= 2 

W8.2 

 

 
VALIDITY : [4] 
CLOSED   : [1] 
TRIANGLES: [1] 
ALLOCATED: [547.047 Kb] 
 
 |V|   = 2595 
 |F|   = 5186 
 |He|  = 15558 

 
VALIDITY  : [OK] 
2-MANIFOLD: [1] 
ALLOCATED : [2071.4 Kb] 
 
 |V|  = 2286 
 |F|  = 3764 
 |He| = 12096 
 |E|  = 6048 
 |Hf| = 7528 
 |Vol|= 2 

Test File : wafer9.wss Number of segments: 3

W9 

 

 
VALIDITY : [4] 
CLOSED   : [1] 
TRIANGLES: [1] 
ALLOCATED: [1145.05 Kb] 
 
 |V|   = 5430 
 |F|   = 10856 
 |He|  = 32568 

 
VALIDITY  : [OK] 
2-MANIFOLD: [1] 
ALLOCATED : [475.125 Kb] 
 
 |V|  = 534 
 |F|  = 853 
 |He| = 2770 
 |E|  = 1385 
 |Hf| = 1706 
 |Vol|= 2 

W9.0 

 

 
VALIDITY : [4] 
CLOSED   : [1] 
TRIANGLES: [1] 
ALLOCATED: [1315.7 Kb] 
 
 |V|   = 6239 
 |F|   = 12474 
 |He|  = 37422 

 
VALIDITY  : [OK] 
2-MANIFOLD: [1] 
ALLOCATED : [1277.55 Kb] 
 
 |V|  = 1382 
 |F|  = 2355 
 |He| = 7470 
 |E|  = 3735 
 |Hf| = 4710 
 |Vol|= 2 

W9.1 

 

 
VALIDITY : [4] 
CLOSED   : [1] 
TRIANGLES: [1] 
ALLOCATED: [529.328 Kb] 
 
 |V|   = 2511 
 |F|   = 5018 
 |He|  = 15054 

 
VALIDITY  : [OK] 
2-MANIFOLD: [1] 
ALLOCATED : [1659.23 Kb] 
 
 |V|  = 1850 
 |F|  = 2993 
 |He| = 9682 
 |E|  = 4841 
 |Hf| = 5986 
 |Vol|= 2 

W9.2 

 

 
VALIDITY : [4] 
CLOSED   : [1] 
TRIANGLES: [1] 
ALLOCATED: [297.93 Kb] 
 
 |V|   = 1414 
 |F|   = 2824 
 |He|  = 8472 

 
VALIDITY  : [OK] 
2-MANIFOLD: [1] 
ALLOCATED : [856.812 Kb] 
 
 |V|  = 1002 
 |F|  = 1491 
 |He| = 4982 
 |E|  = 2491 
 |Hf| = 2982 
 |Vol|= 2 
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As shown in the above table, surface structure is modified after the 
conversion of Polyhedron into Nef-Polyhedron. During the simplification of 
the coplanar faces, some of vertices and facets were removed. After this 
conversion, W3 and W5 were not 2-manifold anymore. This exceptional 
situation is results from the native representation of the Nef-polyhedra. 
When a facet a lies on another facet A and not adjacent with any other 
facet, then the facet a is interpreted as inner cycle of the facet A. This inner 
cycle forms a hole on the facet as a result of the eliminated triangulation 
information during the simplification phase. Fig. 4.1 shows the facets and 
holes on the W3 and W5 surfaces. It is possible to apply Boolean Set 
Operations on this kind of surfaces, however it is not possible to convert 
them back into the polyhedrons again. 

 
The following table gives the percentage of the simplification on different 
surfaces.   
 

Number of 
Points 

Number of 
facets Surface 

POLY NEF 

Simplification 
(%) 

POLY NEF 

Simplification  
(%) 

W0 53 8 84.91 102 6 94.12 
W0.0 28 8 71.43 52 6 88.46 
W0.1 29 8 72.41 54 6 88.89 
W0.2 30 8 73.33 56 6 89.29 

W1 30 30 0.00 56 36 35.71 
W2 48 16 66.67 92 10 89.13 
W3 40 20 50.00 76 18 76.32 
W4 76 16 78.95 148 10 93.24 
W5 57 16 71.93 114 10 91.23 
W6 46 16 65.22 88 10 88.64 

W6.0 38 8 78.95 72 6 91.67 
W6.1 16 8 50.00 28 6 78.57 

W7 870 573 34.14 1736 843 51.44 
W7.0 911 555 39.08 1818 839 53.85 
W7.1 1599 1120 29.96 3194 1676 47.53 

W8 1457 758 47.98 2910 1337 54.05 

 
Fig 4.1. The holes on the facets after conversion. 
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W8.0 1867 32 98.29 3730 18 99.52 
W8.1 3203 1554 51.48 6426 2430 62.18 
W8.2 2595 2286 11.91 5186 3764 27.42 

W9 5430 534 90.17 10856 853 92.14 
W9.0 6239 1382 77.85 12474 2355 81.12 
W9.1 2511 1850 26.32 5018 2993 40.35 
W9.2 1414 1002 29.14 2824 1491 47.20 

 
All methods of our modules were tested on all ten different WSS data files. 
In these tests, we looked at time and resources required for the module 
methods. These tests were realized using the routines of the CGAL support 
library. CGAL provides two different modules for this kind of tests:   
CGAL::Timer and CGAL::Memory_sizer.  
 
The class CGAL::Timer  is a timer class for measuring user process time. A 
timer t of type CGAL::Timer  is an object with a state. It is either running 
or it is stopped. The state is controlled with t.start() and t.stop(). The 
method t.time() gives the user process time in seconds.  
 
The class CGAL::Memory_sizer allows measuring the memory size used by 
the process. Both the virtual memory size and the resident size are available 
(the resident size does not account for swapped out memory nor for the 
memory which is not yet paged-in). The resident size used here. 
 
With the help of these classes, our modules are tested in four different 
phases: Extractions, Conversions, Creating Polyhedrons and Creating NEF-
Polyhedrons. 
  
Extractions 
 

WSS data file 
Instantiation 

Extractor:: 
extract() 

Extractor:: 
buildOFF() Surface 

time [sec] space [Kb] time [sec] space [Kb] time [sec] space [Kb] 
W0 0.147 1064 0.007 24 0.001 0 

W0.0 0.083 1064 0.005 24 0.001 0 
W0.1 0.087 1064 0.002 24 0.001 0 
W0.2 0.087 1064 0.004 24 0.001 0 

W1 0.041 980 0.005 24 0.001 0 
W2 0.060 1024 0.007 24 0.001 0 
W3 0.066 1036 0.006 24 0.001 0 
W4 0.107 1144 0.012 24 0.001 0 
W5 0.081 1068 0.009 24 0.001 0 
W6 1.591 4184 0.009 20 0.001 0 

W6.0 1.595 4184 0.007 20 0.001 0 
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W6.1 1.592 4184 0.002 20 0.002 0 
W7 2.931 6316 0.470 32 0.013 0 

W7.0 2.931 6316 0.503 28 0.012 0 
W7.1 3.002 6316 1.360 56 0.020 0 

W8 9.704 16244 1.285 148 0.020 0 
W8.0 9.568 16244 1.970 84 0.023 0 
W8.1 9.315 16244 4.968 344 0.043 0 
W8.2 9.318 16244 3.386 252 0.036 0 

W9 13.592 22084 16.227 1140 0.065 4 
W9.0 13.727 22084 22.097 1052 0.079 4 
W9.1 13.665 22084 3.126 240 0.036 4 
W9.2 13.498 22084 1.087 84 0.022 4 

 
 

Conversions 
 

Creator::convertNEF() Creator::convertPOLY() Surface 
time [sec] space [Kb] time [sec] space [Kb] 

W0 0.320 948 0.003 124 
W0.0 0.101 768 0.003 124 
W0.1 0.103 776 0.002 124 
W0.2 0.106 780 0.002 124 

W1 0.131 788 0.005 128 
W2 0.182 928 0.002 124 
W3 0.160 840 N/A 0 
W4 0.292 1196 0.004 124 
W5 0.216 1008 N/A 0 
W6 0.187 908 0.004 124 

W6.0 0.146 824 0.002 124 
W6.1 0.066 660 0.004 124 

W7 4.218 6660 0.175 468 
W7.0 4.313 7208 0.132 464 
W7.1 8.060 11848 0.350 816 

W8 6.951 10716 0.230 588 
W8.0 8.497 13328 0.005 124 
W8.1 16.526 23380 0.419 1096 
W8.2 14.592 18928 0.534 1568 

W9 22.558 37192 0.175 464 
W9.0 27.668 42528 0.350 1036 
W9.1 13.216 18164 0.479 1228 
W9.2 7.011 10476 0.237 744 

 
 



 128 

Creating Polyhedrons 
 

Creator:: 
buildPOLY() 

Creator:: 
OFFtoPOLY() Surface 

time [sec] space [Kb] time [sec] space [Kb] 
W0 0.003 124 0.009 280 

W0.0 0.002 108 0.005 264 
W0.1 0.001 112 0.006 268 
W0.2 0.001 112 0.002 268 

W1 0.002 116 0.003 268 
W2 0.002 124 0.004 276 
W3 0.002 116 0.003 272 
W4 0.004 136 0.006 304 
W5 0.003 136 0.004 292 
W6 0.003 112 0.003 276 

W6.0 0.003 112 0.003 268 
W6.1 0.003 104 0.002 260 

W7 0.038 392 0.060 888 
W7.0 0.044 408 0.062 916 
W7.1 0.076 748 0.111 1316 

W8 0.066 768 0.098 1224 
W8.0 0.082 888 0.128 1480 
W8.1 0.140 1432 0.222 2264 
W8.2 0.117 1224 0.177 1944 

W9 0.257 2320 0.374 3680 
W9.0 0.282 2692 0.430 4188 
W9.1 0.113 1188 0.176 1888 
W9.2 0.064 684 0.098 1196 

 
 

Creating NEF-Polyhedrons 
Creator:: 

buildNEF() 
Creator:: 

OFFtoNEF() 
Creator:: 

NEF3toNEF() Surface 
time [sec] space [Kb] time [sec] space [Kb] time [sec] space [Kb] 

W0 0.323 1072 0.329 1228 0.023 288 
W0.0 0.103 876 0.106 1032 0.021 288 
W0.1 0.104 888 0.109 1044 0.024 292 
W0.2 0.107 892 0.108 1048 0.023 292 

W1 0.133 904 0.134 1056 0.090 396 
W2 0.184 1052 0.186 1204 0.020 320 
W3 0.162 956 0.163 1112 0.028 340 
W4 0.296 1332 0.298 1500 0.019 316 
W5 0.219 1144 0.220 1300 0.020 324 
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W6 0.190 1020 0.190 1184 0.023 324 
W6.0 0.149 936 0.149 1092 0.010 288 
W6.1 0.069 764 0.068 920 0.009 292 

W7 4.256 7052 4.278 7548 1.276 2924 
W7.0 4.357 7616 4.375 8124 1.236 2908 
W7.1 8.136 12596 8.171 13164 2.663 5540 

W8 7.017 11484 7.049 11940 1.853 4132 
W8.0 8.579 14216 8.625 14808 0.048 364 
W8.1 16.665 24812 16.747 25644 3.784 7612 
W8.2 14.709 20152 14.769 20872 5.965 11572 

W9 22.815 39512 22.932 40872 1.244 2896 
W9.0 27.950 45220 28.098 46716 3.437 7176 
W9.1 13.329 19352 13.392 20052 4.462 9072 
W9.2 7.075 11160 7.109 11672 2.172 4792 

 
 
To test Boolean set operations, we used the objects W0, W1, W7 and W8. 
Three different Boolean Set Operations were applied on these objects. The 
first operation (#1) was a simple one, which was applied on W0 and W1. The 
second operation (#2) was applied on W7 and W8. The last operation (#3) 
was applied on the segments W7.1 and W8.2.  The results are shown in the 
following three pages. The tables below show the process times and the 
memory sizes used by these Boolean set operations.  
 
 

Process time [sec] Boolean Set Operation 
#1 #2 #3 

Intersection 0.302 7.905 19.030 
Union 0.301 8.908 26.904 
Difference (symm) 0.354 11.960 31.776 
Difference (N1-N2) 0.269 5.398 18.037 
Difference (N2-N1) 0.278 11.869 27.976 

  
 
  

    
Used space[Kb] Boolean Set Operation 

#1 #2 #3 
Intersection 212 744 3472 
Union 100 1752 12332 
Difference (symm) 236 5424 12484 
Difference (N1-N2) 172 16 260 
Difference (N2-N1) 120 3636 7776 

 



 130 

Boolean Set Operation # 1 

 
RESULT OF OPERATION CONVERTED POLYHEDRON Bool. 

Op. view(NP) checkOut(NP) view(P) CheckOut(P) 

W0*W1 

 

 
VALIDITY  : [OK] 
2-MANIFOLD: [1] 
ALLOCATED : [21.4141 Kb] 
 |V|  = 34 
 |F|  = 28 
 |He| = 120 
 |E|  = 60 
 |Hf| = 56 
 |Vol|= 2 
 

 
VALIDITY : [4] 
CLOSED   : [1] 
TRIANGLES: [0] 
ALLOCATED: [4.30469 Kb] 
 |V|   = 34 
 |F|   = 28 
 |He|  = 120 

W0+W1 

 

 
VALIDITY  : [OK] 
2-MANIFOLD: [1] 
ALLOCATED : [31.4375 Kb] 
 |V|  = 52 
 |F|  = 38 
 |He| = 176 
 |E|  = 88 
 |Hf| = 76 
 |Vol|= 2 
 

VALIDITY : [4] 
CLOSED   : [1] 
TRIANGLES: [0] 
ALLOCATED: [6.27344 Kb] 
 |V|   = 52 
 |F|   = 38 
 |He|  = 176 

W0^W1 

 

 
VALIDITY  : [OK] 
2-MANIFOLD: [0] 
ALLOCATED : [50.125 Kb] 
 |V|  = 62 
 |F|  = 66 
 |He| = 248 
 |E|  = 124 
 |Hf| = 132 
 |Vol|= 4 
 

EMPTY POLYHEDRON 
 

W0-W1 

 

 
VALIDITY  : [OK] 
2-MANIFOLD: [1] 
ALLOCATED : [25.7266 Kb] 
 |V|  = 42 
 |F|  = 32 
 |He| = 144 
 |E|  = 72 
 |Hf| = 64 
 |Vol|= 2 
 

VALIDITY : [4] 
CLOSED   : [1] 
TRIANGLES: [0] 
ALLOCATED: [5.14844 Kb] 
 |V|   = 42 
 |F|   = 32 
 |He|  = 144 

W1-W0 

 

 
VALIDITY  : [OK] 
2-MANIFOLD: [1] 
ALLOCATED : [27.125 Kb] 
 |V|  = 44 
 |F|  = 34 
 |He| = 152 
 |E|  = 76 
 |Hf| = 68 
 |Vol|= 2 
 

VALIDITY : [4] 
CLOSED   : [1] 
TRIANGLES: [0] 
ALLOCATED: [5.42969 Kb] 
 |V|   = 44 
 |F|   = 34 
 |He|  = 152 
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Boolean Set Operation # 2 

 
RESULT OF OPERATION CONVERTED POLYHEDRON Bool. 

Op. view(NP) checkOut(NP) view(P) CheckOut(P) 

W7*W8 

 

 
VALIDITY  : [OK] 
2-MANIFOLD: [1] 
ALLOCATED : [511.988 Kb] 
 |V|  = 611 
 |F|  = 877 
 |He| = 2972 
 |E|  = 1486 
 |Hf| = 1754 
 |Vol|= 2 
 

 

 
VALIDITY : [4] 
CLOSED   : [1] 
TRIANGLES: [0] 
ALLOCATED: [104.57 Kb] 
 |V|   = 611 
 |F|   = 877 
 |He|  = 2972 

W7+W8 

 

 
VALIDITY  : [OK] 
2-MANIFOLD: [1] 
ALLOCATED : [718.852 Kb] 
 |V|  = 774 
 |F|  = 1330 
 |He| = 4204 
 |E|  = 2102 
 |Hf| = 2660 
 |Vol|= 2 
 

 

VALIDITY : [4] 
CLOSED   : [1] 
TRIANGLES: [0] 
ALLOCATED: [147.883 Kb] 
 |V|   = 774 
 |F|   = 1330 
 |He|  = 4204 

W7^W8 

 

 
VALIDITY  : [OK] 
2-MANIFOLD: [0] 
ALLOCATED : [1226.53 Kb] 
 |V|  = 1356 
 |F|  = 2204 
 |He| = 7116 
 |E|  = 3558 
 |Hf| = 4408 
 |Vol|= 3 
 

 

EMPTY POLYHEDRON 
 

W7-W8 

 

 
VALIDITY  : [OK] 
2-MANIFOLD: [1] 
ALLOCATED : [25.4922 Kb] 
 |V|  = 38 
 |F|  = 36 
 |He| = 144 
 |E|  = 72 
 |Hf| = 72 
 |Vol|= 2 
 

 

VALIDITY : [4] 
CLOSED   : [1] 
TRIANGLES: [0] 
ALLOCATED: [5.14844 Kb] 
 |V|   = 38 
 |F|   = 36 
 |He|  = 144 

W8-W7 

 

 
VALIDITY  : [OK] 
2-MANIFOLD: [1] 
ALLOCATED : [1204.13 Kb] 
 |V|  = 1345 
 |F|  = 2168 
 |He| = 7026 
 |E|  = 3513 
 |Hf| = 4336 
 |Vol|= 2 
 

 

VALIDITY : [4] 
CLOSED   : [1] 
TRIANGLES: [0] 
ALLOCATED: [247.062 Kb] 
 |V|   = 1345 
 |F|   = 2168 
 |He|  = 7026 
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Boolean Set Operation # 3 

 
RESULT OF OPERATION CONVERTED POLYHEDRON Bool. 

Op. view(NP) checkOut(NP) view(P) CheckOut(P) 

W7.1*W8.2 

 

 
VALIDITY  : [OK] 
2-MANIFOLD: [1] 
ALLOCATED : [1048.36 Kb] 
 |V|  = 1341 
 |F|  = 1688 
 |He| = 6054 
 |E|  = 3027 
 |Hf| = 3376 
 |Vol|= 2 
 

 
VALIDITY : [4] 
CLOSED   : [1] 
TRIANGLES: [0] 
ALLOCATED: [212.922 Kb] 
 |V|   = 1341 
 |F|   = 1688 
 |He|  = 6054 

W7.1+W8.2 

 

 
VALIDITY  : [OK] 
2-MANIFOLD: [0] 
ALLOCATED : [2403.24 Kb] 
 |V|  = 2842 
 |F|  = 4143 
 |He| = 13964 
 |E|  = 6982 
 |Hf| = 8286 
 |Vol|= 2 
 

EMPTY POLYHEDRON 
 

W7.1^W8.2 

 

 
VALIDITY  : [OK] 
2-MANIFOLD: [0] 
ALLOCATED : [3407.65 Kb] 
 |V|  = 3792 
 |F|  = 5833 
 |He| = 19244 
 |E|  = 9622 
 |Hf| = 11666 
 |Vol|= 5 
 

EMPTY POLYHEDRON 
 

W7.1-W8.2 

 

 
VALIDITY  : [OK] 
2-MANIFOLD: [1] 
ALLOCATED : [869.098 Kb] 
 |V|  = 1143 
 |F|  = 1364 
 |He| = 5006 
 |E|  = 2503 
 |Hf| = 2728 
 |Vol|= 3 
 

VALIDITY : [4] 
CLOSED   : [1] 
TRIANGLES: [0] 
ALLOCATED: [176.109 Kb] 
 |V|   = 1143 
 |F|   = 1364 
 |He|  = 5006 

W8.2-W7.1 

 

 
VALIDITY  : [OK] 
2-MANIFOLD: [1] 
ALLOCATED : [2582.95 Kb] 
 |V|  = 3040 
 |F|  = 4469 
 |He| = 15014 
 |E|  = 7507 
 |Hf| = 8938 
 |Vol|= 3 
 

VALIDITY : [4] 
CLOSED   : [1] 
TRIANGLES: [0] 
ALLOCATED: [527.922 Kb] 
 |V|   = 3040 
 |F|   = 4469 
 |He|  = 15014 
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The results of the Boolean Set Operation #1 were used for creating example 
OFF files. The following OFF files were created with the help of the module 
Outer. 
 
intersection.OFF (W0 * W1) 
 

OFF 
34 28 0  
#points 
1.2169 3.0868 2.1982 
1.2458 0.7891 2.0247 
1.5 0.2492 0.5 
1.5 2.0035 0.5 
1.5 3.8527 0.5 
2.5 0.1984 0.5 
2.5 1.7466 0.5 
2.5 3.7752 0.5 
2.7574 0.7291 2.0448 
2.7832 3.0247 2.1996 
1.08327 0 3 
2.91659 0 3 
1.08329 4 3 
2.91659 4 3 
1.15212 0 2.58687 
1.26825 0 1.89018 
1.45944 0 0.743315 
1.5 0 0.5 
2.5 0 0.5 
2.53508 0 0.710535 
2.73821 0 1.92964 
2.86105 0 2.66671 
1.10144 4 2.89112 
1.2485 4 2.00875 
1.47215 4 0.667072 
1.5 4 0.5 
2.5 4 0.5 
2.53979 4 0.738841 
2.75042 4 2.00294 
2.90254 4 2.91568 
1.08327 1.15432 3 
1.08328 2.43268 3 
2.9166 1.11766 3 
2.9166 2.40689 3 

#facets 
3  0 4 3 
4  0 23 24 4 
3  22 23 0 
4  31 12 22 0 
4  30 31 0 1 
3  0 3 1 
3  1 3 2 
10  17 2 3 4 25 26 7 6 5 18 
3  24 25 4 
10  12 13 29 28 27 26 25 24 23 22 
8  30 10 11 32 33 13 12 31 
4  30 1 14 10 
3  14 1 15 
4  1 2 16 15 
3  16 2 17 
10  10 14 15 16 17 18 19 20 21 11 
3  18 5 19 
4  5 8 20 19 
3  5 6 8 
3  6 9 8 
3  6 7 9 
4  7 27 28 9 
3  7 26 27 
3  28 29 9 
4  9 29 13 33 
4  8 9 33 32 
4  8 32 11 21 
3  20 8 21 

 
union.OFF (W0+W1) 
 

OFF 
52 38 0  
#points 
0 0 0 
0 0 3 
0 4 0 
0 4 3 
4 0 0 
4 0 3 
4 4 0 
4 4 3 

#facets 
4  0 2 6 4 
4  0 1 3 2 
14  0 4 5 29 39 38 37 36 35 34 33 32 28 1 
4  4 6 7 5 
14  2 3 30 40 41 42 43 44 45 46 47 31 7 6 
6  1 28 48 49 30 3 
5  11 48 28 32 13 
4  13 32 33 15 
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0.5 -1 6.5 
0.5 2.009 6.5 
0.5 5 6.5 
0.9043 1.5565 4.074 
0.975 5 3.6499 
1.0334 -1 3.2993 
1.2831 5 1.8013 
1.2967 -1 1.7197 
1.5 -1 0.5 
1.5 5 0.5 
2.5 -1 0.5 
2.5 5 0.5 
2.7119 -1 1.7717 
2.7168 5 1.8013 
3.0032 -1 3.5197 
3.0249 5 3.6499 
3.0989 1.5626 4.0938 
3.5 -1 6.5 
3.5 2.009 6.5 
3.5 5 6.5 
1.08327 0 3 
2.91659 0 3 
1.08329 4 3 
2.91659 4 3 
1.15212 0 2.58687 
1.26825 0 1.89018 
1.45944 0 0.743315 
1.5 0 0.5 
2.5 0 0.5 
2.53508 0 0.710535 
2.73821 0 1.92964 
2.86105 0 2.66671 
1.10144 4 2.89112 
1.2485 4 2.00875 
1.47215 4 0.667072 
1.5 4 0.5 
2.5 4 0.5 
2.53979 4 0.738841 
2.75042 4 2.00294 
2.90254 4 2.91568 
1.08327 1.15432 3 
1.08328 2.43268 3 
2.9166 1.11766 3 
2.9166 2.40689 3 

3  33 34 15 
4  15 34 35 16 
4  16 35 36 18 
4  18 36 37 20 
3  37 38 20 
4  20 38 39 22 
5  39 29 50 24 22 
6  31 51 50 29 5 7 
5  47 23 24 51 31 
4  21 23 47 46 
3  45 21 46 
4  44 19 21 45 
4  43 17 19 44 
4  14 17 43 42 
3  41 14 42 
4  12 14 41 40 
5  11 12 40 30 49 
3  11 49 48 
3  9 12 11 
3  8 9 11 
3  8 11 13 
8  8 13 15 16 18 20 22 25 
3  22 24 25 
3  24 26 25 
3  23 26 24 
3  50 51 24 
3  23 27 26 
8  10 27 23 21 19 17 14 12 
3  9 10 12 
6  8 25 26 27 10 9 

 
difference0_1.OFF (W0-W1) 
 

OFF 
42 32 0  
#points 
0 0 0 
0 0 3 
0 4 0 
0 4 3 
4 0 0 
4 0 3 
4 4 0 
4 4 3 
1.2169 3.0868 2.1982 
1.2458 0.7891 2.0247 
1.5 0.2492 0.5 
1.5 2.0035 0.5 
1.5 3.8527 0.5 
2.5 0.1984 0.5 

#facets 
4  0 2 6 4 
4  0 1 3 2 
14  0 4 5 19 29 28 27 26 25 24 23 22 18 1 
4  4 6 7 5 
14  2 3 20 30 31 32 33 34 35 36 37 21 7 6 
6  1 18 38 39 20 3 
4  38 18 22 9 
3  22 23 9 
4  9 23 24 10 
3  24 25 10 
10  25 26 13 14 15 34 33 12 11 10 
3  26 27 13 
4  13 27 28 16 
3  28 29 16 
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2.5 1.7466 0.5 
2.5 3.7752 0.5 
2.7574 0.7291 2.0448 
2.7832 3.0247 2.1996 
1.08327 0 3 
2.91659 0 3 
1.08329 4 3 
2.91659 4 3 
1.15212 0 2.58687 
1.26825 0 1.89018 
1.45944 0 0.743315 
1.5 0 0.5 
2.5 0 0.5 
2.53508 0 0.710535 
2.73821 0 1.92964 
2.86105 0 2.66671 
1.10144 4 2.89112 
1.2485 4 2.00875 
1.47215 4 0.667072 
1.5 4 0.5 
2.5 4 0.5 
2.53979 4 0.738841 
2.75042 4 2.00294 
2.90254 4 2.91568 
1.08327 1.15432 3 
1.08328 2.43268 3 
2.9166 1.11766 3 
2.9166 2.40689 3 

4  16 29 19 40 
6  21 41 40 19 5 7 
4  17 41 21 37 
3  36 17 37 
4  15 17 36 35 
3  15 35 34 
3  32 12 33 
4  8 12 32 31 
3  30 8 31 
4  39 8 30 20 
4  38 9 8 39 
3  9 10 11 
3  8 9 11 
3  8 11 12 
3  14 17 15 
3  14 16 17 
3  13 16 14 
4  16 40 41 17 

 
difference1_0.OFF (W1-W0) 
 

OFF 
44 34 0  
#points 
0.5 -1 6.5 
0.5 2.009 6.5 
0.5 5 6.5 
0.9043 1.5565 4.074 
0.975 5 3.6499 
1.0334 -1 3.2993 
1.2831 5 1.8013 
1.2967 -1 1.7197 
1.5 -1 0.5 
1.5 5 0.5 
2.5 -1 0.5 
2.5 5 0.5 
2.7119 -1 1.7717 
2.7168 5 1.8013 
3.0032 -1 3.5197 
3.0249 5 3.6499 
3.0989 1.5626 4.0938 
3.5 -1 6.5 
3.5 2.009 6.5 
3.5 5 6.5 
1.15212 0 2.58687 
1.26825 0 1.89018 
1.45944 0 0.743315 
1.5 0 0.5 
2.5 0 0.5 
2.53508 0 0.710535 
2.73821 0 1.92964 
2.86105 0 2.66671 
1.10144 4 2.89112 
1.2485 4 2.00875 

#facets 
6  0 17 18 19 2 1 
8  0 5 7 8 10 12 14 17 
3  0 3 5 
3  0 1 3 
3  1 4 3 
3  1 2 4 
8  2 19 15 13 11 9 6 4 
3  15 19 18 
3  15 18 16 
3  16 18 17 
3  14 16 17 
5  27 41 38 16 14 
4  12 26 27 14 
3  25 26 12 
4  10 24 25 12 
4  8 23 24 10 
4  7 22 23 8 
3  21 22 7 
4  5 20 21 7 
5  3 36 40 20 5 
3  3 37 36 
5  3 4 28 42 37 
4  4 6 29 28 
4  6 9 31 30 
3  29 6 30 
4  31 9 11 32 
4  32 11 13 33 
3  33 13 34 
4  13 15 35 34 
5  35 15 16 39 43 
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1.47215 4 0.667072 
1.5 4 0.5 
2.5 4 0.5 
2.53979 4 0.738841 
2.75042 4 2.00294 
2.90254 4 2.91568 
1.08327 1.15432 3 
1.08328 2.43268 3 
2.9166 1.11766 3 
2.9166 2.40689 3 
1.08327 0 3 
2.91659 0 3 
1.08329 4 3 
2.91659 4 3 

3  38 39 16 
10  40 41 27 26 25 24 23 22 21 20 
8  36 37 42 43 39 38 41 40 
10  42 28 29 30 31 32 33 34 35 43 

 
 
The module Outer can produce outputs in different file 
formats. In order to give a general idea about the 
structure of these file formats, the simplest segment 
W6.1 was used. In order to reduce further the number of 
facets/vertices, in the first step, a Nef-polyhedron was 
created from W6.1.  In the second step, this Nef-
polyhedron was converted back into a Polyhedron. 
Thereafter, the following outputs were created with the 
methods of Outer. 
 
 

Object file format  Example.OFF 
 
OFF 
8 6 0 
 
0.8 0 1 
0.8 0 1.5 
0.8 2 1 
0.8 2 1.5 
1.2 0 1 
1.2 0 1.5 
1.2 2 1 
1.2 2 1.5 
4  0 4 5 1 
4  0 2 6 4 
4  0 1 3 2 
4  1 5 7 3 
4  4 6 7 5 
4  2 3 7 6 

 
Open Inventor file format  Example.IV 
  
#Inventor V2.0 ascii 
# File written with the help of the CGAL Library 
# 8 vertices 
# 24 halfedges 
# 6 facets 
 
Separator { 
    Coordinate3 { 
        point   [ 
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            0.8 0 1, 
            0.8 0 1.5, 
            0.8 2 1, 
            0.8 2 1.5, 
            1.2 0 1, 
            1.2 0 1.5, 
            1.2 2 1, 
            1.2 2 1.5, 
        ] #point 
    } #Coordinate3 
    # 6 facets 
    IndexedFaceSet { 
        coordIndex [ 
            0,4,5,1,-1, 
            0,2,6,4,-1, 
            0,1,3,2,-1, 
            1,5,7,3,-1, 
            4,6,7,5,-1, 
            2,3,7,6,-1, 
        ] #coordIndex 
    } #IndexedFaceSet 
 
} #Separator 

 
Wavefront object file format Example.OBJ 
 
# file written from a CGAL tool in Wavefront obj format 
# 8 vertices 
# 24 halfedges 
# 6 facets 
 
 
# 8 vertices 
# ------------------------------------------ 
 
v 0.8 0 1 
v 0.8 0 1.5 
v 0.8 2 1 
v 0.8 2 1.5 
v 1.2 0 1 
v 1.2 0 1.5 
v 1.2 2 1 
v 1.2 2 1.5 
 
# 6 facets 
# ------------------------------------------ 
 
f  1 5 6 2 
f  1 3 7 5 
f  1 2 4 3 
f  2 6 8 4 
f  5 7 8 6 
f  3 4 8 7 
 
# End of Wavefront obj format # 

 
VRML file format v.1.0 Example.VRML1 
 
#VRML V1.0 ascii 
# File written with the help of the CGAL Library 
# 8 vertices 
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# 24 halfedges 
# 6 facets 
 
Separator { 
    Coordinate3 { 
        point   [ 
            0.8 0 1, 
            0.8 0 1.5, 
            0.8 2 1, 
            0.8 2 1.5, 
            1.2 0 1, 
            1.2 0 1.5, 
            1.2 2 1, 
            1.2 2 1.5, 
        ] #point 
    } #Coordinate3 
    # 6 facets 
    IndexedFaceSet { 
        coordIndex [ 
            0,4,5,1,-1, 
            0,2,6,4,-1, 
            0,1,3,2,-1, 
            1,5,7,3,-1, 
            4,6,7,5,-1, 
            2,3,7,6,-1, 
        ] #coordIndex 
    } #IndexedFaceSet 
} #Separator 

 
VRML file format v.2.0 Example.VRML2 
 
#VRML V2.0 utf8 
# File written with the help of the CGAL Library 
#-- Begin of file header 
Group { 
    children [ 
        Shape { 
          appearance DEF A1 Appearance { 
            material Material { 
              diffuseColor .6 .5 .9 
            } 
         } 
            appearance 
                Appearance { 
                    material DEF Material Material {} 
                } 
            geometry NULL 
        } 
        #-- End of file header 
        #-- Begin of Polyhedron_3 
        # 8 vertices 
        # 24 halfedges 
        # 6 facets 
        Group { 
            children [ 
                Shape { 
                    appearance Appearance { material USE Material } 
                    geometry IndexedFaceSet { 
                        convex FALSE 
                        solid  FALSE 
                        coord  Coordinate { 
                            point [ 
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                                0.8 0 1, 
                                0.8 0 1.5, 
                                0.8 2 1, 
                                0.8 2 1.5, 
                                1.2 0 1, 
                                1.2 0 1.5, 
                                1.2 2 1, 
                                1.2 2 1.5, 
                            ] #point 
                        } #coord Coordinate 
                        coordIndex  [ 
                            0,4,5,1,-1, 
                            0,2,6,4,-1, 
                            0,1,3,2,-1, 
                            1,5,7,3,-1, 
                            4,6,7,5,-1, 
                            2,3,7,6,-1, 
                        ] #coordIndex 
                    } #geometry 
                } #Shape 
            ] #children 
        } #Group 
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Conclusion 

 
 

 
 

Nothing exists except atoms and empty space; everything else is opinion. 
  

Democritus 
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Chapter 5 

5. Conclusion 
Boolean set operations are generally used in in the field solid modelling for 
obtaining complex objects from simple ones. Boolean set operations are 
necessary also in the micro-fabrication simulations. The Computational 
Geometry Algorithms Library (CGAL) offers some features for creating 3D 
solid surfaces as well as applying Boolean set operations on them. In this 
study, a programmer interface was defined for applying Boolean set 
operations on the WSS data files containing information about micro-
fabrication simulations. This programmer interface utilizes the features of 
CGAL for the necessary Boolean set operations.  
 
For representing three-dimensional polyhedral structures, the algorithm 
library of CGAL offers two different classes: CGAL::Polyhedron_3 and 
CGAL::Nef_Polyhedron_3.  
 
The CGAL::Polyhedron_3 is relatively old and therefore a well-
integrated class of CGAL. This class offers more possibilities for 
inputs/outputs and has a variety of different constructors for creating 
objects. However, the Boolean set operations cannot be applied on the 
CGAL::Polyhedron_3 objects. The CGAL::Nef_Polyhedron_3 is the 
only class in CGAL which allows Boolean set operations. A 
CGAL::Nef_polyhedron_3 object can be obtained directly from a 
CGAL::Polyhedron_3 object.  
 
As a result, some conversions are necessary in both directions. Different 
native properties of these two classes affect the necessary conversions. The 
following results have key importance, which need to be mentioned again: 
 
1. The CGAL::Polyhedron_3 can also represent open surfaces, which do 

not properly define a volume. However, this kind of 
CGAL::Polyhedron_3 objects are excluded from the conversion into 
CGAL:: Nef_polyhedron_3. Therefore, a CGAL::Polyhedron_3 
object is convertible into CGAL:: Nef_polyhedron_3, only if it is 
closed. 

 
2. The results of the Boolean set operations can also have non-manifold 

situations. However, since the CGAL::Nef_polyhedron_3 can also 
model non-manifold solids, this does not cause any problems. 
Unfortunately, non-manifold surfaces are not offered by 
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CGAL::Polyhedron_3. Therefore, CGAL::Nef_polyhedron_3 object 
is convertible into a CGAL::Polyhedron_3 object, only if it is 2-
manifold. 

 
These properties and limitations are discussed in detail in section 3.3.2 
(implementation details of the module Creator). The results of this study can 
be summed up as follows: 
 
1. Incremental Builder is a useful mechanism in creating polyhedral 

structures in a fast manner. This mechanism offers also great debug 
possibilities for object creations.  

 
2. Since WSS data file instantiation is a time and space consuming process, 

it is more efficient to use the external OFF files for creating objects.   
 
3. Using native NEF3 files is the fastest way of creating a NEF polyhedron 

(Please note that NEF3 files are readable via streams if and only if they 
are written already in the same kernel representation). 

   
4. NEF-Polyhedron has a native topological structure. During the 

conversion of triangulated objects into NEF-Polyhedrons, the coplanar 
faces on the surfaces are simplified. This surface modification is 
irreversible. 

 
5. The 2-manifold results of the Boolean set operations are convertible into 

Polyhedrons. However, the surfaces of these Polyhedrons consist of 
polygons instead of triangles. CGAL does currently not offer the 
possibility of re-triangulating the polyhedron surfaces.  

 
6. The results of Boolean set operations can have non-manifold boundaries. 

Since other tools generally cannot interpret them, this kind of results is 
not useful.  

 
7. Boolean set operations are also applicable on rather complex objects. As 

the number of facets in WSS data files increase, application of Boolean 
set operations becomes rather time-consuming. Symmetric difference 
returns more non-manifold results. It is also a time and space consuming 
process. Therefore, it should be preferred only when necessary.  

 
8. The class CGAL::Nef_polyhedron_3 has some limitations, and it 

cannot be used with all allowed kernel representations. This class 
requires exact integer kernels. Therefore, the constructions with small 
double coordinates cause some problems in the surface simplification 
phase. 
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9. There are some exceptional situations on object surfaces (such as W3 and 
W5, see page 121, fig 4.1). 

 
As discussed in previous chapters, Boolean set operations and the class 
CGAL::Nef_polyhedron_3, are quite new in the CGAL algorithm library.  
In other words, they are not yet fully integrated into this library. As the 
above results suggest, these new parts require quite a number of 
preconditions and exceptions.  
 
Despite these limitations and exceptions, our implementation can easily 
apply Boolean set operations on the created objects. The module Extractor 
offers the possibility of bringing the simulation data into CGAL. The module 
Creator offers several ways of creating three-dimensional objects based on 
the simulation data. The modules Checker and Displayer are responsible for 
debugging and displaying. After the operations, it is possible to take outputs 
in different file formats with the module Outer. These outputs can be used 
in other sessions and with different applications. The data flow between 
different modules is optimized to work with small resources. Due to their 
flexible designs, the modules can be used independently. The modules are 
designed to be compatible with the future releases of CGAL, however, this 
cannot be guaranteed. The interface has been tested using different WSS 
files. The Chapter 4 summarizes the results and outputs of these tests.  
 
In the course of development, we have consulted with the CGAL team 
several times. These consultations have proved to be rather helpful in 
overcoming many difficulties. Through these consultations, the team 
became informed about our needs. The CGAL team plans new options and 
possibilities for the next release.  
 
This study gives a general overview about CGAL, which aims at giving an 
overall idea about the structure and design of CGAL. It gives a detailed 
description about using Boolean set operations in CGAL 3.1. It also 
introduces related terms and topics. In this regard, we hope that this study 
provides a quick-start for the future works with the next versions of CGAL.  
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Appendices 

 
 

 
 

Give the public everything you can give them, keep the place as 
clean as you can keep it, keep it friendly. 

 
Walt Disney 
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Chapter 6 

6. Appendices 

6.1 Source files 

Extractor.h 
 
class Extractor{ 
  
 Wafer_h  wafer; 
 Segment_h  seg; 
 Surface_hvh  surf; 
  
 int   i,j,k; 
 int   wDim, nos,nop,nof; 
 Face   tri; 
 K1::Point_3  Cp; 
 
 // A function object which returns true if (point p) < (point q) 
 template<class T>  
 struct lessXYZ:public binary_function<T,T,bool> { 
  bool operator() (const T& t1, const T& t2) const {  
    return (CGAL::lexicographically_xyz_smaller(t1,t2)); 
  }  
 }; 
  
 // private Methods  
 void getSurface();     
 int FindIndice(K1::Point_3 &aP);   
 void SortPoints();     
    
 public: 
 
 Extractor(char *fname);      
 ~Extractor(){};       
 
 void   extract(); 
 void   extract(unsigned int segNum); 
 void  buildOFF(char *fname); 
 int     getNOS(); 
 int   getDIM(); 
   
}; 
 
// Constructor  
Extractor::Extractor(char* fname){  
 
 Config_h cfg(new Config());     
 Reader_h reader(new WssReader(cfg, fname));   
    
 wafer = newWafer(reader, cfg);    
    
 points.clear(); facets.clear();      
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} 
 
// Extracts wafer surface 
void Extractor::extract() { 
    
    surf = wafer ->getSurface();  
    
   getSurface(); 
     
} 
 
// Extracts segment surface 
void Extractor::extract(unsigned int segNum) { 
    
    seg  = wafer->nextSegment(segNum); 
   surf = seg ->getSurface();  
    
 getSurface();    
 
} 
 
// Gives the number of segments 
int Extractor::getNOS() { 
 
    nos = wafer -> getNbSegments(); // Number of segments   
    return (nos); 
} 
 
// Gives the dimension of wafer 
int Extractor::getDIM() { 
 
 wDim = wafer -> dim(); // Number of segments   
 return (wDim); 
 
} 
 
// Receives the requested surface  
void Extractor::getSurface() { 
     
   Surface_hv::iterator  hit; 
   Surface_h  aFace; 
   unsigned int   actPoi; 
   Point   Wp; 
 
    cout << "Reading Points...\n"; 
 points.clear(); 
  
 for ( hit = surf->begin(); hit != surf->end(); hit++ ) { 
           aFace = *hit; actPoi = 0;  
    for (i=0; i<3; i++) {  
        Wp = *(aFace-> nextPoint(actPoi)); 
        Cp = K1::Point_3(Wp.x,Wp.y,Wp.z);  
        if ( std::find(points.begin(),points.end(),Cp)  
       == points.end() ) 
           { points.push_back(Cp); } 
           } 
        } 
         
    SortPoints(); 
 
    cout << "Reading Facets...\n"; 
    facets.clear(); 
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 for ( hit = surf->begin(); hit != surf->end(); hit++ ) { 
           aFace=*hit; actPoi = 0; tri.clear(); 
    for (i=0; i<3; i++) {  
        Wp = *(aFace-> nextPoint(actPoi)); 
        Cp = K1::Point_3(Wp.x,Wp.y,Wp.z);  
        j = FindIndice(Cp); 
        tri.push_back(j); 
           } 
           if  (aFace->pointOrderOrientation())  
            { reverse(tri.begin(),tri.end());} 
           facets.push_back(tri); 
        } 
         
} 
 
// Builds an OFF file from STL containers  
void Extractor::buildOFF(char *fname) { 
  
 int i,j, nov; 
 
 K1::Point_3 Cp; 
     
 ofstream out(fname); 
     
 nop = points.size(); 
 nof = facets.size(); 
  
 CGAL::set_ascii_mode(out); 
 out << "OFF" << endl; 
 out << nop << ' ' << nof << " 0" << endl; 
 
 for( i=0; i<nop; i++) { 
  Cp = points[i]; 
  out << CGAL::to_double(Cp.x()) << " ";  
  out << CGAL::to_double(Cp.y()) << " "; 
  out << CGAL::to_double(Cp.z()) << "\n"; 
 } 
 
// copy( points.begin(), points.end(),  
       ostream_iterator<K1::Point_3>( out, "\n")); 
      
 for (i=0; i<nof ;i++){ 
  tri = facets[i]; 
  nov = tri.size(); 
  out << nov; 
  for (j=0; j<nov ;j++)  out << ' ' << tri[j]; 
  out << endl; 
 } 
     
 out.close(); 
 
} 
 
// Returns the indice of requested point in list points 
int Extractor::FindIndice(K1::Point_3 &aP) { 
 
 int l,r,mid, indice; 
  
 l = 0; r = points.size(); 
 indice = -1; 
  
 do { 
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      mid = l + (r - l)/2; 
          if (aP == points[mid]){indice=mid;} 
      if (lexicographically_xyz_smaller(aP,points[mid]))  
         {r = mid;} else {l = mid;} 
 } while ((indice == -1) && (l!=r)); 
  
 return (indice);  
 
} 
 
// Sort the list points respect to order xyz. 
void Extractor::SortPoints() { 
 
 cout << "Sorting points...\n"; 
 std::sort(points.begin(),points.end(), lessXYZ<K1::Point_3>());  
 
} 

 
Creator.h 
 
// A template for building a polyhedron with incremental builder. 
template <class HDS> 
class Builder:public CGAL::Modifier_base<HDS> { 
 
 public: 
      
 Builder(){}  
 void operator()( HDS& hds) { 
        
  std::cout << "Changing HDS...\n"; 
 
      int i; 
      Face tri; 
  K1::Point_3    Cp; 
 
  int nop = points.size();  
  int nof = facets.size(); 
     
      CGAL::Polyhedron_incremental_builder_3<HDS> PH(hds, xVerbose); 
                
         PH.begin_surface( nop, nof, 0,0);  
 
       for (i=0; i<nop; i++) { 
       Cp = points[i]; 
       PH.add_vertex(Cp); 
       } 
            
  for (i=0; i<nof; i++) { 
  tri=facets[i]; 
  PH.add_facet(tri.begin(), tri.end()); 
         } 
 
  PH.end_surface(); 
        
         if (PH.check_unconnected_vertices())  
          {PH.remove_unconnected_vertices();}  
 
     } 
 
}; 
 
// A function object to scaling points of a polyhedron 
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K1::Point_3 scaleP(K1::Point_3& Cp) { 
 return ( CGAL::ORIGIN + ( (Cp - CGAL::ORIGIN) * xScale ) ); 
} 
 
// A function object to rescaling points of a polyhedron 
K1::Point_3 reScaleP(K1::Point_3& Cp) { 
 return ( CGAL::ORIGIN + ( (Cp - CGAL::ORIGIN) * xRescale ) ); 
} 
 
class Creator{ 
 
 Polyhedron buildPolyhedron();      
 Polyhedron      scanPolyhedron(char *fname);  
 Nef_polyhedron scanNEF(char *fname);       
 bool   isKernEQ(); 
 
 public: 
  
 Creator(){};         
 ~Creator(){};         
 
 Polyhedron      buildPOLY();    
 Nef_polyhedron  buildNEF();     
 
 Polyhedron OFFtoPOLY(char *fname);  
 Nef_polyhedron OFFtoNEF(char *fname);   
 Nef_polyhedron NEF3toNEF(char *fname);  
 
   
 Nef_polyhedron boolNEF(Nef_polyhedron& N1, 
    Nef_polyhedron& N2, boolOP op); 
 
 Polyhedron  convertPOLY(Nef_polyhedron& NP, bool scaling=true ); 
 Nef_polyhedron  convertNEF(Polyhedron& P, bool scaling=true );
       
 
   
}; 
 
// Returns true if K1==K2 
bool Creator::isKernEQ(){ 
   
 Polyhedron P1; 
 Polyhedron_K2 P2; 
 
 CGAL::Object obj = make_object(P1); 
 
 return (CGAL::assign(P2,obj)); 
} 
 
// Scans a polyhedron from OFF files 
Polyhedron Creator::scanPolyhedron(char *fname) { 
     
 Polyhedron Px; 
 
 std::ifstream in(fname); 
 scan_OFF(in, Px, xVerbose); 
 Px.normalize_border(); 
 
 return (Px); 
  
} 
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// Scans a Nef-polyhedron from NEF3 files 
Nef_polyhedron Creator::scanNEF(char *fname){ 
  
 Nef_polyhedron NPx; 
 std::ifstream in(fname); 
 in >> NPx; 
 
 return (NPx); 
 
} 
 
// Create a polyhedron with the template Builder 
Polyhedron Creator::buildPolyhedron() {      
    
 std::cout << "Building a Polyhedron with Incremental Builder...\n"; 
 Polyhedron Px; 
    
 Builder<HalfedgeDS> PHDS;  
 Px.delegate(PHDS);  
 Px.normalize_border(); 
 
 return (Px); 
 
} 
 
// Converts a Polyhedron into Nef-Polyhedron (when closed) 
Nef_polyhedron Creator::convertNEF(Polyhedron& Px, bool scaling) { 
 
    Nef_polyhedron NPx; 
 
    if (Px.is_closed()) { 
 
        std::cout << "Building a NEF from created polyhedron...\n"; 
       
      if (scaling) 
 std::transform( Px.points_begin(), Px.points_end(),  
   Px.points_begin(), scaleP); 
  
 Polyhedron_K2 Px2; 
 Px2.clear(); 
 
  std::cout << "Converting Kernel K1->K2...\n"; 
  std::ofstream out("temp.OFF");out << Px; 
   std::ifstream in ("temp.OFF");in  >> Px2; 
 
 Px2.normalize_border(); 
 NPx = Nef_polyhedron(Px2); 
    }     
    else {std::cout << "\nCreated Polyhedron is NOT closed!\n";} 
 
    return (NPx); 
 
} 
 
// Converts a Nef-Polyhedron into Polyhedron (when 2-manifold) 
Polyhedron Creator::convertPOLY(Nef_polyhedron& NPx, bool scaling) { 
    
 Polyhedron Px; 
    
 if (NPx.is_simple()) { 
  std::cout << "\nConverting NEF to Polyhedron...\n"; 
 
  Polyhedron_K2 Px2; 
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  Px2.clear(); 
 
  NPx.convert_to_Polyhedron(Px2); 
  Px2.normalize_border(); 
 
  std::cout << "Converting Kernel K2->K1...\n"; 
  std::ofstream out("temp.OFF");out << Px2; 
  std::ifstream in ("temp.OFF");in  >> Px; 
 
  Px.normalize_border(); 
  
  if (scaling) 
   std::transform( Px.points_begin(), Px.points_end(),  
           Px.points_begin(), reScaleP); 
 
 } else {std::cout << "\nNEF Polyhedron is NOT simple!\n";} 
    
 return (Px); 
 
} 
 
// returns back the result of requested boolean operation. 
Nef_polyhedron Creator::boolNEF(Nef_polyhedron& N1, 
    Nef_polyhedron& N2, boolOP op) { 
 
 Nef_polyhedron NPx; 
        std::cout << "BSO ->"; 
 
 switch(op){ 
         case INT : std::cout << "(N1*N2) Intersection:\n"; 
             NPx= N1*N2; 
             break; 
         case UNI : std::cout << "(N1+N2) Union:\n"; 
             NPx= N1+N2; 
             break; 
         case SYM : std::cout << "(N1^N2) Symmetric Difference:\n"; 
             NPx= N1^N2; 
             break; 
         case D12 : std::cout << "(N1-N2) Difference:\n"; 
             NPx= N1-N2; 
             break; 
         case D21 : std::cout << "(N2-N1) Difference:\n"; 
                    NPx= N2-N1; 
             break; 
         default : std::cout << "\nPossible operations: 
       INT, UNI, SYM, D12, D21\n"; 
             break; 
        }  
        
       return (NPx.regularization()); 
} 
 
// Build a Polyhedron from STL containers 
Polyhedron Creator::buildPOLY() { 
 Polyhedron Px; 
    Px = buildPolyhedron();  
    return (Px); 
} 
 
// Build a NEF-Polyhedron from STL containers 
Nef_polyhedron Creator::buildNEF() { 
 Polyhedron Px; 
    Px = buildPolyhedron();  
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 Nef_polyhedron NPx; 
 NPx = convertNEF(Px);  
    return (NPx); 
} 
 
// Create a Polyhedron from OFF files  
Polyhedron Creator::OFFtoPOLY(char *fname){ 
 Polyhedron Px; 
    Px = scanPolyhedron(fname);  
 return (Px); 
}  
 
// Create a Nef-Polyhedron from OFF files  
Nef_polyhedron Creator::OFFtoNEF(char *fname){ 
 Polyhedron Px; 
    Px = scanPolyhedron(fname);  
 Nef_polyhedron NPx; 
 NPx = convertNEF(Px);  
    return (NPx); 
} 
 
// Create a Nef-Polyhedron from NEF3 files  
Nef_polyhedron Creator::NEF3toNEF(char *fname){ 
 Nef_polyhedron NPx; 
   NPx = scanNEF(fname);  
 return (NPx); 
} 
 
 
Displayer.h 
 
class Displayer{ 
 
 typedef CGAL::Geomview_stream    GV_Stream; 
 typedef CGAL::Qt_widget_Nef_3<Nef_polyhedron>  QTNef; 
  
 GV_Stream  gv; 
 
    public: 
 Displayer();         
 ~Displayer(){};         
   
 void   clear() { gv.clear(); } 
 void   view(Polyhedron& Px);   
 void   view(Nef_polyhedron& NPx);  
 void   view_POINTS();    
 void   view_FACETS();    
 void   view_OFF(char* fname);   
}; 
 
// Constructor 
Displayer::Displayer() { 
 
    gv.set_bg_color(CGAL::BLACK);  
    gv.set_vertex_color(CGAL::GREEN);  
    gv.set_edge_color(CGAL::RED); 
 
    gv.clear(); 
 
} 
 
// Displays a Polyhedron in Geomview 
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void Displayer::view(Polyhedron& Px) {  
 
    gv.set_face_color(CGAL::Color(rand()+128,rand()+128,rand()+128)); 
    gv << Px; 
    gv.look_recenter(); 
  
} 
 
// Displays a Nef Polyhedron in QtWidget 
void Displayer::view(Nef_polyhedron& NPx) { 
    
   int arg1 = 1; char *arg2[] = {"NEF"}; 
    
   QApplication app(arg1,arg2);  
   QTNef* widget = new QTNef(NPx); 
    
   app.setMainWidget(widget);  
   widget->show(); 
   std::cout << "\nPlease close NEF displayer to continue execution...\n"; 
   app.exec();  
}  
 
// displays the list points in geomview 
void Displayer::view_POINTS(){ 
 
   int i; 
   int nop = points.size(); 
    
   for (i=0; i<nop ;i++){ 
     gv << CGAL::RED << points[i];  
   } 
   gv.look_recenter(); 
 
} 
 
// display list facets  in geomview 
void Displayer::view_FACETS(){ 
    
   int i; 
   Face tri; 
   int nof = facets.size(); 
    
   for (i=0; i<nof ;i++){ 
     tri = facets[i]; 
     gv.set_face_color(CGAL::Color(rand(),rand(),rand())); 
     gv << K1::Triangle_3(points[tri[0]],points[tri[1]],points[tri[2]]); 
   } 
   gv.look_recenter(); 
 
} 
 
// display an OFF file in geomview 
void Displayer::view_OFF(char *fname) { 
 
    Polyhedron Px; 
 
    std::ifstream in(fname); 
    scan_OFF(in, Px, xVerbose); 
    Px.normalize_border(); 
 
    view(Px); 
} 
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Checker.h 
 
class Checker { 
 
 public: 
 
 Checker() {}; 
 ~Checker() {}; 
 
 void checkOut(Polyhedron& Px, std::ostream& out = std::cout);  
 void checkOut(Nef_polyhedron& NPx, std::ostream& out = std::cout); 
 void check_FacetConsistency();    
 
}; 
 
//Check a Polyhedron & Display results... 
void Checker::checkOut(Polyhedron& Px, std::ostream& out) { 
 
       out << "\n[Info_POLY]:\n----------------\n"; 
 
 if (Px.empty()) {out << "\nan EMPTY Polyhedron!\n";} 
 else { 
 
  int i; 
  out << " VALIDITY : ["; 
  for (i=4; i>=0;i--)  
   if (Px.is_valid(xVerbose,i)) {break;} 
  out << i << "]\n"; 
 
  out << " CLOSED   : ["; 
  if (Px.is_closed()) 
   { out << "1";} 
  else { out << "0";} 
  out << "]\n"; 
 
  out << " TRIANGLES: ["; 
  if (Px.is_pure_triangle()) 
   { out << "1";} 
  else { out << "0";} 
  out << "]\n"; 
 
  out << " ALLOCATED: ["<< Px.bytes() / 1024.0 << " Kb]\n"; 
 
  out << " |V|   = " << Px.size_of_vertices() << "\n"; 
  out << " |F|   = " << Px.size_of_facets() << "\n"; 
  out << " |He|  = " << Px.size_of_halfedges() << "\n"; 
 
 } 
 out << "----------------\n"; 
 
}  
 
//Check a Nef Polyhedron & Display results...     
void Checker::checkOut(Nef_polyhedron& NPx, std::ostream& out) { 
 
        out << "\n[Info_NEF]:\n----------------\n"; 
 
 if (NPx.is_empty()) {out << "\nan EMPTY Nef-Polyhedron!\n";} 
 else { 
 
  out << " VALIDITY  : ["; 
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  if (NPx.is_valid())  
   { out << "OK";} 
  else { out << "-1";} 
  out << "]\n"; 
 
  out << " 2-MANIFOLD: ["; 
  if (NPx.is_simple()) 
   { out << "1";} 
  else { out << "0";} 
  out << "]\n"; 
 
  out << " ALLOCATED : ["<< NPx.bytes() / 1024.0 << " Kb]\n"; 
  
  out << " |V|  = " << NPx.number_of_vertices() << "\n"; 
  out << " |F|  = " << NPx.number_of_facets() << "\n"; 
  out << " |He| = " << NPx.number_of_halfedges() << "\n"; 
 
  out << " |E|  = " << NPx.number_of_edges() << "\n"; 
  out << " |Hf| = " << NPx.number_of_halffacets() << "\n"; 
  out << " |Vol|= " << NPx.number_of_volumes() << "\n"; 
   
 } 
  
 out << "----------------\n"; 
} 
 
// Find & Report the wrong permutations in the list facets. 
void Checker::check_FacetConsistency() { 
    
   int   i,j,r,c; 
   Face  F; 
    
   int nop = points.size(); 
   int nof = facets.size(); 
    
   bool  adj[nop][nop]; 
   bool  isOK = true; 
    
   std::cout << "\nChecking Facet orientations..."; 
   for (r=0; r<nop; r++)  
 for (c=0; c<nop; c++)  
  { adj[r][c] = 0;} 
  
   for (i=0; i<nof ;i++) { 
    F = facets[i]; 
    for (j=0; j<3 ;j++){  
      r = j ; c = (j+1)%3; 
       if (adj[F[r]][F[c]]) { 
           // swap(F[r], F[c]); 
           std::cout << "\nError : Facet[" << i << "], "; 
        std::cout << F[r] << "->" << F[c] << std::endl; 
           facets[i]= F; 
        isOK = false; 
         }  
    } 
     for (j=0; j<3 ;j++) { 
       r = j ; c = (j+1)%3; 
       adj[F[r]][F[c]]=1; 
     } 
   } 
 
   if (isOK) std::cout << ": OK!\n"; 
}  
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Outer.h 
 
// Write polyhedron with native kernel representation to an OFF file. 
template <class Poly> 
void write_OFF(char* fname, const Poly& P) { 
 
    typedef typename Poly::Vertex                                 Vertex; 
    typedef typename Poly::Vertex_const_iterator                  VCIt; 
    typedef typename Poly::Facet_const_iterator                   FCIt; 
    typedef typename Poly::Halfedge_around_facet_const_circulator HFCCirc; 
 
    std::ofstream out(fname); CGAL::set_ascii_mode(out); 
 
    // Writing Header 
    out << "OFF\n"  
 << P.size_of_vertices()  
 << ' ' << P.size_of_facets() << " 0\n"; 
 
    // Writing Points 
    for( VCIt vi = P.vertices_begin(); vi != P.vertices_end(); ++vi) { 
 out << vi->point().x() << " "; //::CGAL::to_double( ) 
 out << vi->point().y() << " "; 
 out << vi->point().z() << "\n"; 
    } 
 
    // Writing Facets 
    HFCCirc HFc; 
 
    for ( FCIt fi = P.facets_begin(); fi != P.facets_end(); ++fi) { 
         HFc = fi->facet_begin(); 
         CGAL_assertion( CGAL::circulator_size(HFc) >= 3); 
         out << CGAL::circulator_size(HFc) << ' '; 
         do {  
   out << ' '  
   << std::distance(P.vertices_begin(), HFc->vertex()); 
         } while ( ++HFc != fi->facet_begin()); 
         out << std::endl; 
    } 
    out.close(); 
}; 
 
 
class Outer { 
 
     char name[64]; 
 
     public: 
 Outer() {}; 
 ~Outer() {}; 
 
 void OFF(Polyhedron& Px, char* fname); 
 void VRML1(Polyhedron& Px, char* fname); 
 void VRML2(Polyhedron& Px, char* fname); 
 void IV(Polyhedron& Px, char* fname); 
 void OBJ(Polyhedron& Px, char* fname); 
 void NEF3(Nef_polyhedron& NPx, char* fname); 
}; 
 
// Write out a polyhedron in OFF file Format. 
void Outer::OFF(Polyhedron& Px, char* fname) { 
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 sprintf(name,"%s.OFF",fname); 
 std::ofstream fout(name); 
 fout << Px;  
 fout.close(); 
} 
 
// Write out a polyhedron in VRML v1.0 file Format.  
void Outer::VRML1(Polyhedron& Px, char* fname) { 
 
 sprintf(name,"%s.VRML1",fname); 
 std::ofstream fout(name); 
 CGAL::VRML_1_ostream out(fout); 
 out << Px;  
 fout.close(); 
} 
 
// Write out a polyhedron in VRML v2.0 file Format. 
void Outer::VRML2(Polyhedron& Px, char* fname) { 
 
 sprintf(name,"%s.VRML2",fname); 
 std::ofstream fout(name); 
 CGAL::VRML_2_ostream out(fout); 
 out << Px;  
 fout.close(); 
} 
 
// Write out a polyhedron in Open Inventor file Format. 
void Outer::IV(Polyhedron& Px, char* fname) { 
 
 sprintf(name,"%s.IV",fname); 
 std::ofstream fout(name); 
 CGAL::Inventor_ostream out(fout); 
 out << Px;  
 fout.close(); 
} 
 
// Write out a polyhedron in Wavefront Object file Format. 
void Outer::OBJ(Polyhedron& Px, char* fname) { 
 
 sprintf(name,"%s.OBJ",fname); 
 std::ofstream fout(name); 
 print_wavefront(fout, Px); 
 fout.close(); 
} 
 
// Write out a polyhedron in NEF3 file Format. 
void Outer::NEF3(Nef_polyhedron& NPx, char* fname) { 
 
 sprintf(name,"%s.NEF3",fname); 
  
   std::ofstream out(name); 
   out << NPx; 
   out.close(); 
 
} 
 
globals.h 
 
// C++ headers 
#include <iostream> 
#include <fstream>       
#include <stdlib.h> 
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#include <vector> 
#include <algorithm> 
 
// WSS headers 
#include "wssreader.hh" 
#include "waf_config.hh" 
#include "wafertools.hh" 
#include "wafelem.hh" 
 
/////////// CGAL headers /////////////////////////////////////// 
 
 
// Kernel Representations 
#include <CGAL/Cartesian.h> 
#include <CGAL/Homogeneous.h> 
#include <CGAL/Gmpz.h> 
#include <CGAL/Gmpq.h> 
 
// Helper Classes 
#include <CGAL/Object.h> 
#include <CGAL/Timer.h> 
#include <CGAL/Real_timer.h> 
#include <CGAL/Memory_sizer.h> 
 
// Polyhedron / Nef Polyhedron 
#include <CGAL/Polyhedron_3.h> 
#include <CGAL/Nef_polyhedron_3.h> 
#include <CGAL/Polyhedron_incremental_builder_3.h> 
 
// Output streams 
#include <CGAL/IO/Polyhedron_iostream.h> 
#include <CGAL/IO/Nef_polyhedron_iostream_3.h> 
 
#include <CGAL/IO/Polyhedron_geomview_ostream.h> 
#include <CGAL/IO/Polyhedron_inventor_ostream.h> 
#include <CGAL/IO/Polyhedron_VRML_1_ostream.h> 
#include <CGAL/IO/Polyhedron_VRML_2_ostream.h> 
#include <CGAL/IO/print_wavefront.h> 
 
// Visualization 
#include <CGAL/IO/Geomview_stream.h> 
#include <CGAL/IO/Qt_widget_Nef_3.h> 
#include <qapplication.h> 
 
///////////////////////////////////////////////////////////////// 
 
// Necessary typedefs 
 
// Number Types 
typedef CGAL::Gmpq      NT1; 
typedef CGAL::Gmpz      NT2; 
 
// Kernels 
typedef CGAL::Cartesian<NT1>     K1; 
typedef CGAL::Homogeneous<NT2>           K2; 
 
// Polyhedron / NEF 
typedef CGAL::Polyhedron_3<K1>           Polyhedron; 
typedef Polyhedron::HalfedgeDS            HalfedgeDS; 
typedef CGAL::Polyhedron_3<K2>           Polyhedron_K2; 
typedef CGAL::Nef_polyhedron_3<K2>       Nef_polyhedron; 
 
// Our containers 
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typedef std::vector<K1::Point_3>    PointList; 
typedef std::vector<int>      Face; 
typedef std::vector<Face>     FaceList; 
 
// Globals  
 
PointList    points; 
FaceList   facets; 
 
NT1    xScale = NT1(10000); 
NT1    xRescale = NT1(0.0001); 
     
bool     xVerbose = false; 
 
enum     boolOP  { INT,UNI,SYM,D12,D21 }; 
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6.2 Modified Makefile 

 
# Created by the script create_makefile 
# This is the makefile for compiling a CGAL application. 
 
#---------------------------------------------------------------------# 
#                    include platform specific settings 
#---------------------------------------------------------------------# 
# Choose the right include file from the <cgalroot>/make directory. 
 
# CGAL_MAKEFILE = ENTER_YOUR_INCLUDE_MAKEFILE_HERE 
include $(CGAL_MAKEFILE) 
 
#---------------------------------------------------------------------# 
#                    Our modifications 
#---------------------------------------------------------------------# 
 
WSS_INCPATH  = -I$(CGAL_INCL_DIR)/WAFER 
WSS_LIBPATH  = -L$(CGAL_LIB_DIR)/WAFER 
 
# The directory of our modules 
ALPER_INC    = -I/home/alperix/tu/prod/include 
 
WSS_LIBS = -lwss-r -ldynwr -latt -lwss-w -loct -lquadXZ -lbtree  \ 
           -lptsearch -ljaw -lwaf_base -lstate -lvbs  \ 
           -lgeo-octel -lcfg-parse -lgeo -lantlr -ldyn -lerr -lser -liuecxx 
 
# Write here your source file name (without extension) 
NSOURCE=sourceFileName 
 
#---------------------------------------------------------------------# 
#                    compiler flags 
#---------------------------------------------------------------------# 
 
CXXFLAGS = \ 
    $(CGAL_CXXFLAGS) \ 
           -Iinclude \ 
           $(LONG_NAME_PROBLEM_CXXFLAGS) \ 
           $(DEBUG_OPT) \ 
           $(WSS_INCPATH) \ 
           $(ALPER_INC) 
 
 
#---------------------------------------------------------------------# 
#                    linker flags 
#---------------------------------------------------------------------# 
 
LIBPATH = \ 
          $(CGAL_WINDOW_LIBPATH)\ 
          $(WSS_LIBPATH) 
 
LDFLAGS = \ 
          $(LONG_NAME_PROBLEM_LDFLAGS) \ 
          $(CGAL_QT_LDFLAGS)  \ 
     $(OPENGL_LIBS)  \ 
     $(WSS_LIBS) 
#---------------------------------------------------------------------# 
#                    target entries 
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#---------------------------------------------------------------------# 
 
all:            \ 
                $(NSOURCE)$(EXE_EXT) 
 

$(NSOURCE)$(EXE_EXT): $(NSOURCE)$(OBJ_EXT) 
  $(CGAL_CXX) $(LIBPATH) $(EXE_OPT) 

$(NSOURCE) $(NSOURCE)$(OBJ_EXT) $(LDFLAGS) 
 
clean: \ 
                   $(NSOURCE).clean 
 
#---------------------------------------------------------------------# 
#                    suffix rules 
#---------------------------------------------------------------------# 
 
.C$(OBJ_EXT): 
 $(CGAL_CXX) $(CXXFLAGS) $(OBJ_OPT) $< 
 
 

6.3 Desktop picture 

 
The following picture is illustrated at the start of this study. It was my 
desktop picture during this study, since approximately one year.  
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