

To my love and my daughter…

 The human is always in love with something
he didn't see or hear before.

He looks for and is longing for it night and day.
What he has understood, he gets bored of and runs away.

Mevlana

Technische Universität Wien

DIPLOMARBEIT

Visualization of Data from
Micro-Fabrication Simulation-

A CGAL Interface for Boolean Set Operations

ausgeführt an den Instituten
E101 - Analysis und Scientific Computing

und
E360 – Mikroelektronik der Technischen Universität Wien

unter der Anleitung von
Ao.Univ.Prof. Dipl.-Ing. Dr. techn. Christoph Überhuber

durch

Ahmet Alper ÖZAĞAÇ
Forsthausg. 2-8/3504 1200 – WIEN

e869 / 9527396

Wien, 12.December.2005

 2

Abstract

The goal of this work was the development of a programmer interface that
interacts with two different program libraries. The programmer interface
was intented to enable the application of Boolean set operations on
simulation data which contain geometric information about 3D solid object
surfaces. The data are to be obtained from micro-fabrication simulation. The
programmer interface first reads the simulation data over the I/O interface
of the so called Wafer State Server (WSS) and then applies Boolean set
operations with the help of the Computational Geometry Algorithms Library
(CGAL).

To sum up, this study deals with a programmer interface enabling Boolean
set operations needed for some of the topographic process simulation steps
in the field of micro-fabrication simulation.

 3

Acknowledgements
I would like to thank all the people who supported me in many ways,
directly or indirectly. Lots of thanks to all my friends who made it possible
that I am here at this point today. Many thanks to all those situations, in
which I found myself. Of course, many thanks to my parents for having
given me the chance to study. Also many thanks to my sister who was the
first friend of mine; to my lovely grandmother who has always been a very
special person for me; and to my first grand master in computers, he was my
chief and educater, Dipl. Ing. Yakup Durşen, thank you very much indeed.

I am grateful to my dear wife Mag. Dr. Mürvet Özagac for showing so much
patience and giving all her support during my studies. You are one of the
best things happened to me in my life. I am also grateful to my little girl,
Melike Nur Özağaç, for her pearly button eyes in her girly little face and her
small pretty fingers tapping on my notebook.

I do not know how I can thank my supervisor Ao. Univ. Prof. Dipl.-Ing. Dr.
techn. Christoph Überhuber, for his friendly support that he gave me during
this thesis. He is an excellent mathematician with a great personality. It
was a very nice experience to meet this absolutly respectable person. It is a
pitty that I met him only towards the end of my long university life.

I thank my friend Mag. Kaan Taşlı for correcting parts of my thesis. He
always tried to understand the way I think before making any corrections. I
thank you for your great sacrifice. Your way of perceiving life reminds me
Winnie the Puh. I like your selected frames of life, which I believe to see in
your photographs.

I thank Dipl. Ing. Elaf Al-ani, MMag. Zeynep Baraz, Dipl.Ing. Tamer Belir,
Mr. Arif Kula ($B000), Mr. Ismail TAN, Ing. Şakir SERT, Mr. Ramazan
ÖZALTIN (flic) and others for their moral support and friendship. Special
thanks to Mr. Alper Tunga.

This study came into being in different districts of Vienna as I was rushing
around in my taxi (W-4662-TX). My lovely thanks go to Ms. Sezen AKSU
who has the great ability of putting unspoken emotions into words. Her
songs sometimes make me forget where exactly I am during my taxi-service.

I thank all my customers who had ridden my taxi for their financial and
moral support.

Thanks.

 4

Index

Abstract ... 2
Acknowledgements .. 3
1. Introduction.. 6

1.1 Motivation... 8
1.2 Industrial Application ... 10

2. CGAL... 15
2.1 Preliminaries... 15
2.2 Library Structure.. 19
2.3 Generic Design of CGAL .. 20
2.4 Robustness Solutions... 23
2.5 CGAL Programmer Interface ... 26

2.5.1 Circulators ... 29
2.5.2 Assertions and Checks ... 30
2.5.3 I/O Streams .. 31

2.6 Kernel Objects and Operations .. 33
2.7 Kernel Representations ... 37
2.8 Polyhedral Structures .. 41

2.8.1 Related Topics ... 41
2.8.2 3D‐Polyhedral Surfaces.. 52
2.8.3 3D‐Nef Polyhedron .. 59

3. Implementation ... 73
3.1 Overview... 73
3.2 File Formats .. 75
3.3 Implementation Details... 79

3.3.1 Extractor... 79
3.3.2 Creator.. 87
3.3.3 Displayer.. 100
3.3.4 Outer... 106
3.3.5 Checker... 109
3.3.6 Header Files and Globals... 112

3.4 Using of the Interface .. 115
4. Results and Outputs ... 120
5. Conclusion.. 141
6. Appendices ... 145

6.1 Source files .. 145
6.2 Modified Makefile.. 160
6.3 Desktop picture .. 161

7. Bibliography... 162

 5

Chapter 1

Introduction

I can resist everything except temptation.

Oscar Wilde

 6

Chapter 1

1. Introduction

In geometry, a polyhedron is simply a three-dimensional solid, which
consists of a collection of polygons, usually joined at their edges. The term
polyhedron is used somewhat differently in algebraic topology, where it is
defined as a space that can be built from such building blocks as line
segments, triangles, tetrahedra, and their higher dimensional analogs by
gluing them together along their faces. More specifically, a polyhedron can
be defined as the underlying space of a boundary structure [Wr09]. This
underlying space can be obtained from the intersections of halfspaces. Since
they give a computer realizable model for solid boundaries, these definitions
are used for describing solid objects and related data structures.

Algorithms for carrying out Boolean set operations on solid objects are one of
the most important facilities in a solid modelling system. Such algorithms
are used to unite, intersect, or subtract solid objects. For this purpose the
algorithms need a complex description of solid objects. They also need a data
structure for evaluating Boolean operations and storing their results. These
operations (as illustrated in Fig. 1.1) are used generally for building more
complicated 3D solids from primitive ones.

Computational Geometry Algorithms Library (CGAL) offers the possibility of
applying Boolean set operations on 3D solid objects. In general, CGAL, as a
programmer's library, enables geometric computations with a large
collection of algorithms and data structures which can be used for different
purposes. In the context of this study, the framework of CGAL is used as the
basis for the above discussed Boolean set operations.

Wafer State Server (WSS) is also a programmer's library which can be
defined as a tool which aims at integrating process and device simulators in

Fig. 1.1 Boolean set operations on 3D solids.

 7

the field of micro-fabrication. This library is used partially for accessing the
simulation data in our work.

In order to realize these operations, the following steps are carried out: The
programmer interface reads the simulation data delivered over the WSS I/O
interface. As a part of CGAL, 3D-Nef polyhedron supports the Boolean set
operations. However, Nef polyhedrons can be constructed from closed 3D-
polyhedral surfaces, which are another part of CGAL. Therefore, in the first
step, using the geometric information received from WSS, 3D-Polyhedral
Surfaces are built. In the next step, these built structures are transformed
into 3D-Nef polyhedrons on which Boolean set operations are applied. The
result of these operations are converted again into 3D-Polyhedral Surfaces
in order to give outputs in some of the standard file formats such as Open
Inventor, WaveFront Object File and VRML. Fig. 1.2 gives an overview of
the whole process flow which is subject to this work.

The industrial application of this study is in process simulation in micro-
fabrication. The main focus of this study is on the process steps named
etching and deposition. These terms and further details about WSS are
introduced in Section 1.2.

Fig 1.2 Symbolized process flow.

 8

1.1 Motivation

The two main goals of this study are:

1. Providing a programmer interface to CGAL which can be used in the
context of micro-fabrication simulation. Especially, Boolean set operations of
3D geometrical objects are to be provided.

2. Exploring the possibilities and concepts provided by CGAL. The gained
experiences and knowledge are to be documented in a concise way to
establish a reference for related future work, especially in the field of micro-
fabrication simulation. CGAL is a useful library, which is often used in
scientific projects in the last few years.

We use the 3D-Nef polyhedron part of the CGAL for necessary Boolean set
operations. Nef Polyhedra were introduced by Walter Nef in his seminal
1978 book1 on polyhedra. Nef polyhedra are defined as the closure of half-
spaces under Boolean set operations. They can be used to represent non-
manifold situations, open and closed boundaries, as well as mixed
dimensional complexes. CGAL uses a data structure for the three-
dimensional version of Nef polyhedra. It also contains algorithms, which are
necessary for applying topological and Boolean set operations on Nef
polyhedra. This part of the algorithm library is called 3D-Nef-Polyhedron.
The first serious implementation of Nef polyhedra in CGAL took place in the
release 3.1 of CGAL. In December 2004, this implementation was still in
preparation. Using Boolean set operations on 3D solid objects was not
possible in previous versions of CGAL. This new possibility is utilized in our
implementation. Some necessary modules and a real integration with CGAL
are promised for the feature releases, and are not supported at the moment.
Therefore, an implementation which uses this new part of the CGAL should
have a flexible design for ease of use as well as for new developments in the
future. Such an implementation should also offer more possibilities for
debugging.

1 Nef explains the aim of his contribution to the polyhedra in his book named „Beiträge zur Theorie der Polyeder“
as follows:
„…, und da ich inzwischen bemerkt hatte, dass sich im Rahmen des verhältnismäßig einfachen Polyeder Problems
rechts anspruchsvolle Fragen stellen, entschloss ich mich, meine Untersuchungen weiterzuführen, wobei die Frage,
was den überhaupt unter einem Polyeder zu verstehen sei, an den Anfang zu stellen war. Eine entsprechende
Definition wird sich in der Computergraphischen Praxis bewahren, wenn sie eine benutzerfreundliche
Art der Beschreibung eines Polyeders und die Schaffung brauchbarer Algorithmen für die notwendigen, von
der Beschreibung eines Polyeders zu einem Bild desselben führenden, Berechnungen gestattet. Als wichtiges
Hilfsmittel für die Beschreibung komplizierter Polyeder erweist sich (vgl. [7]) seine Bildung durch Vereinigen,
Schneiden und Subtrahieren einfacherer Polyeder…“

 9

The implemented programmer interface is designed under these
considerations. It has a modularized structure. Debug, display, and output
possibilities can be used easily in every step of a session. Described modules
are independent from each other which mean that users can include only
the necessary module(s). Since defined objects can share the same data
resources, it is possible to work even with small resources without conflicts.

The interface consists of five modules which are Extractor, Creator,
Displayer, Checker and Outer. Extractor is used to extract surface
information of wafer components from WSS data files. Creator class
describes different methods for creating Polyhedrons/NEF-Polyhedrons with
the extracted surface information. This class is also responsible for Boolean
Set Operations. Creator can scan the externally stored results of operations
from previous sessions. Checker and Displayer are responsible for debug and
displaying. With Outer module offers the user different choices for the
output format of the results.

CGAL was initially developed by a consortium of seven different Institutes.
The CGAL-project has been funded officially since October 1996. The team
of developers consists of academic professionals from the field of
computational geometry and related areas, especially research assistants
and PhD students.

The CGAL Release 1.2 of January 1999
consists of approximately 110,000 lines
of C++ source code for the library, plus
50,000 lines for accompanying sources,
such as the test suite and example programs, not counting C++ comments or
empty lines [Cp07]. CGAL has become an Open Source Project with Release
3.0 in November 2003 and the current release 3.1 is from December 2004.
CGAL 3.1 is the release, which is used in this study.

The goal of CGAL is to make available to users in industry and the
academic world the most important efficient solutions to basic geometric
problems developed in the area of computational geometry in a software
library. The homepage of CGAL [Wr01] provides a list of publications about
CGAL and related research: previous overviews, the first design of the
geometric kernel, recent overviews and descriptions of the current design.
CGAL is discussed in detail in the chapter 2.

Scientific libraries developed within the academic circles have larger
theoretical boundaries than the ones developed for commercial purposes.
CGAL is a large and well defined C++ library which is based on different
fields of mathematics such as computational geometry and topology. Even in

 10

the reference manual of the CGAL, we observe a large number of
mathematical terms and definitions as well as several recursive references
to scientific papers. In addition, a high percentage of the CGAL code has a
highly flexible design which is based on generic programming paradigms.
One of the main difficulties in working with CGAL is the highly demanding
and time-consuming process of becoming familiar with this library. It is
rather difficult to have a brief overview of CGAL for a quick start with the
selected components for limited purposes. The terminological complexity in
the language of CGAL documentation also constitutes some problems.

During this thesis, very much time and effort have been spent for clarifying
the terminological complexity discussed above, and for a quick-start to
CGAL. It is important to give a comprehensive overview about this huge
library, in order to make further explanations about the work done for this
thesis focused and conclusive. Necessary terms should be briefly introduced
before relevant parts of library are presented.

This study is presented under the considerations discussed above. Figures
used in this study are illustrated as simple as possible, and the given
examples are selected carefully among the most explanatory ones. In
addition, for the sake of brevity, we have tried to avoid unnecessary
explanations which exceed the boundaries of this study. To the extent
possible, informal short descriptions are preferred instead of long and closed
formal definitions.

To sum up, this study serves two main purposes. First, the Chapter CGAL
gives a comprehensive overview about future works on the CGAL. The
implemented programmer interface can easily read and process WSS data
files in the actual release of the CGAL. Furthermore, since some new
features are promised for the future releases of the CGAL, this study might
be the right start for those who wish to learn and use the CGAL for Boolean
set operations on 3D-Solid Objects.

1.2 Industrial Application

Micro fabrication is the science of modifying, growing or depositing thin
layers of materials, typically on wafers2, and patterning those films into
precise structures [P07]. The repeated application of these processes creates
devices ranging from simple solar cells and sensors to complex microchips.
Commonly, the term wafer denotes a circular disk that serves as base

2 wafer 1. Semiconductor die. 2. A thin, flat disk, ring, or plate around which the contacts of a rotary switch are
spaced. 3. A thin square or rectangle of dielectric material used as the dielectric member in a fixed capacitor. 4. A
plate cut from a crystal (e.g., a quartz wafer) [B02].

 11

Fig. 1.3 Wafer
fabrication.

material in the semiconductor fabrication process.
Hundreds of process steps are performed on wafer to
create devices like transistors or diodes [P01]. These
repeated process steps produce considerable changes in
the surface profile as it undergoes various effects of
etching3 and deposition4. This problem known as surface
topography problem in micro fabrication. Wafer
fabrication complicated process flow discussed in [B01]
and simplified respect to our goals in Fig. 1.3.

Etching means cropping of useless part(s) from surface
of material. Etching always comes with an etching mask
(is usually “defined” by photo-resist using lithography
techniques), can prevent material from being etched by
etchant5. By deposition step, a layer/material is being
deposited on another structure. Particles are deposited
on the surface, which causes build up in the profile [B01,
Wr11]. These process steps etching and deposition are
illustrated in Fig.1.4.

Process and device simulations are well accepted in the wafer fabrication.
They present an invaluable help in improving existing technologies, and can
drastically reduce development time and costs. Simulation programs are
based on TCAD (Technology Computer Aided Design) model, work in

3 etching 1. Chemically eating away a metal to form a desired pattern, such as an etched circuit. 2. Thinning a
quartz-crystal plate by slowly eroding one or both of its faces with hydrofluoric acid to fine-tune the resonant
frequency [B02].
4 deposition The application of a layer of one substance (usually a metal) to the surface of another (the substrate),
as in evaporation, sputtering, electroplating, silk-screening, etc [B02].
5 etchant Any substance such as cupric chloride, ferrous chloride, or hydrochloric acid, used in etching [B02].

Fig. 1.4 Etching and Deposition.

 12

diverse steps along the fabrication process, and serve on different purposes.
TCAD tools which are designed for device simulations are unrelated to this
work. Related applications are classified in TCAD model as Topography
Simulators [P01]. Our work is focused on process simulations, especially, on
simulations in etching and deposition steps.

TCAD specifies a data model which has some major requirements. The tool
must store the result of simulation for later reference (Visualization, input
for other simulation etc.). The tool needs a standardized way to interact
with different meshing tools. The user needs support to extract topological
information to manipulate the underlying geometry after a topography step.
All data structures and algorithms offered by the data model should be
available in two and three dimensions [P01].

A TCAD conform wafer description contains the geometry (topography) of
the device structure, and quantities as they are used by the simulator
models. Topography simulators need a geometrical view of the data. In
addition, the topography is altered during such a process simulation. A
deposition step will introduce completely new regions. In an etching step,
existing regions can completely vanish, can be split into several regions, or
can be merged into a single region [P01].

As a TCAD tool, Wafer State Server (WSS) is an object oriented data model
for above introduced field. This data model gives a unification of what data
is common to all tools. The data model aims at the mentioned integration of
process and device simulators. The data model is realized as a C++ class
library and deals with several aspects of TCAD simulations. These aspects
include I/O operations, meshing and algorithms like the extraction of
interfaces between two simulation domains. The usage of well defined
interfaces gives the possibility to easily exchange algorithms without
breaking the simulator [P01].

Fig. 1.5 The concept of theWafer State Server (WSS).

 13

The meshing interface consists of classes and methods to define geometry to
start the gridding mechanism and to retrieve the generated grid elements.
The I/O interface comprises a set of classes and methods to retrieve data
from and to store data on a persistent wafer, respectively. The core interface
contains data structures to hold wafer data and methods to perform data
manipulations. (Fig.1.5). WSS data model designed to store whole
information about simulation such as material properties, physical
quantities or geometric information. Public Reader Interface of WSS provide
to access geometric information of components on wafer during the
simulation [P01].

In addition, WSS development has not been really finalized. WSS has only a
relational API document on the Web which is created automatically with
some documentation tools during its development. For this reason, it is not
possible to say something explanatory on WSS. Fortunately, we have used
WSS only partially as a secondary library for inputs. Therefore, only a small
portion of this study contains information on WSS. However, WSS still
helps us to understand the industrial sense of this study.

 14

Chapter 2

CGAL

There are 10 kinds of people in the world
 – Those who understand binary and those who don't.

From GNU Humour Collection

 15

Chapter 2

2. CGAL
The Computational Geometry Algorithm Library (CGAL) is a well described
C++ Library which is implemented using the terms and models of the
computational geometry. This chapter consists of four parts. The first part
deals with terms and models of computational geometry and related
problems which influenced the design of the CGAL. Its second part gives the
library-, design- and a programmer interface-overview about the CGAL.
These overviews are followed by introduction of Kernel-objects, -operations
and -representations which constitutes the heart of the CGAL. In the final
part of this chapter, there is a relatively detailed discussion on 3D
polyhedral surfaces and 3D-Nef Polyhedron, which are used for Boolean set
Operations.

2.1 Preliminaries

Before starting, we need to answer some questions such as: "Why has CGAL
such a complex structure?"; "Why do they use special implementation
techniques such as traits?"; "Why does CGAL provide such a comprehensive
support for well-known libraries?" Answers to these questions would give a
brief idea about the structure of the CGAL. In his paper [P02], T. Godfried
gives a rather interesting overview on computational geometry. In
particular, the following example selected by the author and the following
definitions are useful for providing a meaningful introduction to the CGAL:

Consider the point p and the line l arranged in the plane as illustrated in
the Fig.2.1 on the left side. Does the point p lie on, above or below the line l?

 16

This question is a geometric predicate, and asks for a geometric property of
the given set of geometric objects {p,l}.

In this simple problem let us assume that

• the point p is specified in terms of its x and y coordinates (,)p px y ,
• the line l is given by the linear equation (0,)y ax b a a= + ≠ ≠ ±∞ .

To solve this problem it suffices to compute the intersection point of the
vertical line through p with l.

• Call this point z with coordinates (,)z zx y .
• Then z px x= and zy may be calculated using the equation z py ax b= + .
• If ()z py y> then p lies below l,
• if ()z py y< then p lies above l and
• if ()z py y= then p lies on the line l.

From the sight of computational geometry, this algorithm is only one
approach to solve this problem. In a narrow sense, computational geometry
is concerned with computing geometric properties of sets of geometric
objects in space. In a broader sense, it is concerned with the design and
analysis of algorithms for solving geometric problems. In a deeper sense, it
is the study of the inherent computational complexity of geometric problems
under varying models of computation. At a low level, computational
geometry is concerned with the comparative study of fundamental
algorithms with the goal of determining, in different computational
contexts, which algorithm run faster, which require less memory space and
which are more robust with respect to numerical errors [P02].

A geometric problem can be seen as a mapping from a set of permitted input
data, consisting of a combinatorial and numerical part, to set of valid input
data, again consisting of a combinatorial and numerical part. A geometric
algorithm solves a problem if it computes the output specified by the
problem mapping for a given input. For some geometric problems the
numerical data of the output are a subset of the data of the input. Those
geometric problems called selective. In other geometric problems new
geometric objects are created which involve new numerical data that have to
be computed from the input data. Such problems are called constructive
[Cp01].

For instance, 2D Convex Hull Problem is a selective problem [Cp01], because
output set H(P) is a subset of input set P (Fig 2.2).

 17

An example of Input-Output model for this problem might look as follows:

INPUT: A point set 2

1 2, , { , , }nP P n P p p p∈ = =\ "
• Numerical part: Coordinate values of points. , (,), 1,i i i ip P p x y i n∀ ∈ = =
• Combinatorial part: The assignment of the coordinate values to the

points in the plane.

OUTPUT: A set of all extreme points H(P) Œ P. In other words, it is the
smallest convex polygon containing all input points. The combinatorial part
of the output might be the sorted cyclic sequence of the points on the convex
hull in counter-clockwise order.

Second classical geometric problem is intersection of line segments. Output is
a set of intersection points of lines. Since the intersection points are in
general not part of the input, the problem is constructive [Cp01]. A variant
may ask only for all pairs of segments that have a point in common. This
version is selective.

The geometric computation model in
Fig.2.3 is taken from a presentation
file [Cd07] about the first versions of
the CGAL. According the below model,
an algorithm is defined in terms of the
geometric objects and operations on
these objects. Typical operations are
decision predicates such as
lexicographic orders or orientation
tests. Other common operations are
basic constructions such as the
midpoint of two points, geometric
transformations, intersections, the
application of other algorithms, etc.

Fig. 2.2 2D-Convex hull of a point set

 Fig. 2.3 Geometric Computation

model.

 18

On the other hand, geometric algorithms are usually designed and proven to
be correct in a computational model that assumes exact computation over
real numbers. In implementations of geometric algorithms, exact real
arithmetic is mostly replaced by the fast finite precision floating-point
arithmetic [P03] provided by the hardware of a computer system. For some
problems and restricted sets of input data, this approach works well, but in
many implementations the effects of squeezing the infinite set of real
numbers into the finite set of floating point numbers can cause catastrophic
errors in practice.

Usually, the input data to a computation are produced by previous
computations whose results are only approximate. Due to rounding errors
many implementations of geometric algorithms crash, loop forever or in the
best case simply compute the wrong results for some of the inputs for which
they are supposed to work. There is some solutions to compute exactly but
these fault the efficiency of calculations [Cp01].

The conditionals in a program are most critical because they determine the
flow of control. Geometric predicates are conditionals of geometric
algorithms. Mutually contradicting decisions violating basic laws of
geometry may take the algorithm to a state which could never be reached
with correct decisions. Since the algorithm was not designed for such states,
it crashes. Therefore segmention faults and bus errors are more likely than
incorrect results [Cp01].

For the above mentioned reasons, the CGAL supports exchangeable
geometric kernels and number types. This gives the CGAL also high
flexibility. Geometric algorithms as defined by the CGAL are commonly
separated into layers, as it is shown in the left diagram in Figure 2.4. These
layers can be defined as follows: the algorithm itself, a geometric kernel
with geometric objects and primitive operations, and the number type used
to represent the coordinates of the geometric objects [Cp12].

Fig. 2.4 Different layers in geometric algorithms and specialization of

predicates and algorithms from left to right [Cp12].

 19

The Figure 2.4 illustrates this specialization in following steps. (a) Three
layers: the algorithm, geometric objects with predicates and number types.
(b) Two layers: the algorithm with geometric objects and predicates
specialized on the built-in number type double. (c) The algorithm itself
specialized for the built-in number type double and a specific
implementation of the predicates.

2.2 Library Structure

CGAL, the Computational Geometry Algorithms Library, is written in C++
and is made of several modular units. In this modular structure several
bigger units can be distinguished:

• Core library with basic non-geometric functionality,
• Geometric kernel for primitives,
• Algorithms Library with more complicated geometric structures and

functionality,
• Support library that offers supplementary functionality.

Both the Core library and the Support library deal with things that are not
purely geometric in nature. Core library, responsible for non-geometric base
functionality of CGAL which contains configurations, assertions,
enumerations or circulators. In other words, the Core library offers
functionality that is needed in the Geometric kernel or the Algorithms
Library. Also, the first three units in the list can be seen as layers built on
top of each other. The support library stands apart from the rest. The core
library and the geometric kernel together are called the CGAL kernel.

C
G

A
L
 K

e
rn

e
l

S
u

p
p

o
rt

 L
ib

ra
ry

N
o

n
-

G
e
o

m
e
tr

ic
 f

a
ci

li
ti

e
s

Fig. 2.5 Structure of CGAL

 20

Geometric kernel contains simple geometric objects like points, lines, circles,
triangles, sphere or tetrahedra. The criterion for simplicity is that those
objects have constant size. There are geometric predicates and constructions
on those objects such as orientation tests or intersections. The geometric
kernel is split in three parts that deal with 2-dimensional objects, 3-
dimensional objects and general d-dimensional objects. For all dimensions
there are Cartesian and homogeneous representations.

Algorithms library is a collection of more complex geometric objects and
data structures. This library is made of mostly independent parts,
independent from each other, but even independent from the CGAL kernel.
Actual content of algorithm library is summarized in Table 2.1 to give an
idea about the components [Cd01].

Support Library consists of non-geometric support facilities, such as support
for number types [Wr02, Wr03, Wr04], STL extensions for CGAL, handles,
circulators, protected access to internal representations (modifiers),
geometric object generators such as random point sets, timers, I/O stream
operators and other stream support including PostScript, colours, windows,
and visualization tools GeoWin [Wr02], Geomview [Wr05] and a Qt-widget
[Wr06].

2.3 Generic Design of CGAL

The design of the CGAL library ensues five main goals [Cp05]: Flexibility,
Correctness, Robustness, Efficiency and ease of use. To realizing this design
goals used special generic programming techniques such as templates and
traits. Following paragraph is a well description about CGAL, is obtained
exactly from CGAL developer manual [Cd02]:

• 2D Convex Hulls and Extreme Points
• 3D Convex Hulls
• dD Convex Hulls and Delaunay Triangulations
• Planar Nef Polyhedra
• Nef Polyhedra embedded on the Sphere
• 3D Nef Polyhedron
• 2D Planar Maps
• 2D Planar Maps of Intersecting Curves
• 2D Triangulations and Data Structure
• 3D Triangulations and Data Structure
• 2D Conforming Triangulations and Meshes
• Intersecting Sequences of Iso oriented Boxes
• Polygons and Polygon Operations
• Planar Polygon Partitioning
• 2D Segment Voronoi Diagrams

• 2D Alpha Shapes
• 3D Alpha Shapes
• 2D Arrangements
• Topological Maps
• Sweep line
• 3D Polyhedral Surfaces
• Halfedge Data Structure
• 2D Apollonius graphs
• dD Range and Segment Tree
• Interpolation
• Geometric Optimisation
• 2D Search Structures
• Interval Skip List
• Spatial Searching

Table 2.1 The existing Algorithms and Data Structures
 in actual version of CGAL 3.1

 21

"The first part of library CGAL kernel, which consists of constant-size non-
modifiable geometric primitive objects and operations on these objects. The
objects are represented both as stand-alone classes that are parameterized
by a representation class, which specifies the underlying number types used
for calculations and as members of the kernel classes, which allows for more
flexibility and adaptability of the kernel. The second part algorithms library
is a collection of basic geometric data structures and algorithms, which are
parameterized by traits classes that define the interface between the data
structure or algorithm and the primitives they use. In many cases, the
kernel classes provided in CGAL can be used as traits classes for these data
structures and algorithms".

This generic design is symbolized in figure 2.6. As seen above, a number
type, representation and trait are used to parametrizing the algorithm
CGAL::Polyhedron_3. With this technique, the same algorithm can
response the demands of different kinds of applications.

Since the structure of CGAL affected from the five design goals introduced
above, we want to give also some details about them. These details selected
from [Cp05].

First goal of CGAL design is flexibility. This term described in the design of
CGAL under 4 sub terms:

typedef CGAL::Gmpz Arithmetic;
typedef CGAL::Homogeneus<Arithmetic> Representation;
typedef CGAL::Polyhedron_traits_3<Representation> Traits;
typedef CGAL::Polyhedron_3<Traits> Polyhedron;

int main() {
 Polyhedron P; //Instance

 if (P.is_closed()) cout << "2 Manifold";

}

Fig. 2.6 Generic design of CGAL.

 22

• Modularity: A clear structuring of CGAL into modules with as few
dependencies as possible helps a user in learning and using CGAL since
the focus can be narrowed on those modules that are actually of interest.
Natural examples are the distinction between 2D and 3D geometry, or
separate modules for convex hull computation and point set
triangulation.

• Adaptability: CGAL might be used in an already established

environment with geometric classes and algorithms. An example is the
application of the convex hull algorithm to a user defined point type,
which differs from the CGAL point type.

• Extensibility: It should be possible to easily integrate new objects and

algorithms into CGAL. As a typical instance: easily add new
geometric objects to the library and to provide corresponding intersection
functions similar to those existing for native CGAL objects.

• Openness: CGAL should be open to coexist with other libraries or better

to work together with other libraries and programs. Example: GMP
[Wr03] for number types, Qt [Wr06] for visualization.

Second term is ease of use. CGAL Programmer Interface optimized with 4
principals:

• Smooth Learning Curve
• Uniformity
• Complete and Minimal Interfaces
• Rich and Complete Functionality

C++ users have a smooth learning curve with CGAL, since it is based in
many places on concepts known from STL or the other parts of the C++
Standard Library. An example is the use of streams and stream operators in
CGAL. Another example is the use of container classes and algorithms from
the STL. More details about it discussed in next section also.

A uniform look-and-feel of the design in CGAL will help in learning and
remembering. A function name once learned for a specific class should not
be named differently for another class. Exceptions should be minimized in
the design. An object or module should be complete in its functionality but
should not provide additional decorating functionality.

In a modularized program the correctness of a module is determined by its
own correctness and the correctness of all the modules it depends on. In
order to get correct results, correct algorithms and data structures must be

 23

used. Exactness should not be confused with correctness in the sense of
reliability. There is nothing wrong with approximation algorithms
computing approximate solutions as long as they do what they pretend to
do. Also an algorithm handling only non-degenerate cases can be correct
with respect to its specification although in CGAL handling degeneracies6 at
the first hand [Cp05].

Efficiency means in CGAL, time and space efficiency. Efficiency is a
competing goal with respect to flexibility, robustness, and ease of use. But
efficiency has first priority in CGAL. As long as it is a small constant
fraction CGAL are willing to sacrifice efficiency in favour of the other goals.
In fact, the techniques used for flexibility in CGAL enable also to achieve
optimal efficiency. Whenever possible and known, the most efficient version
of an algorithm is used. Sometimes multiple versions of an algorithm are
supplied. For example if dealing with degeneracies is expensive a faster but
less general version might also be supplied. [Cp05].

Most geometric algorithms are a mix of numerical and combinatorial
computations. This leads to a fundamental problem with the
implementation of geometric algorithms. This specific nature is usually the
root of the non-robustness problems. Some details about the problems are
given already in chapter 2.1. There are many approaches to this problem,
one of them is to compute exactly (compute so accurate that all decisions
made by the algorithm are exact) which is possible in many cases but more
expensive than standard floating-point arithmetic. CGAL use Exact
Computation Paradigm7 for robustness [Cd01].

2.4 Robustness Solutions

There are several solutions in the literature to solve the non-robustness
issues. Since some of these solutions are used mainly by CGAL, or are
related with our study, we want to announce with basic principals of them.
These basic introductions summarized from the CGAL documents [Cp01,
Cp02, Cp03 and Cp06]:

Exact integer and rational arithmetic: With the integer arithmetic
provided by the hardware only overflow may occur, but no rounding errors.

6 Degeneracies arise from the special position of two geometric objects. For example, two segments in general
position either do not intersect or intersect at a point interior to both segments. Two intersecting segments in special
position may overlap, may share a common endpoint with or without being collinear, may have one segment
endpoint interior to the other segment, etc.
7 Discussed in C. K. Yap and T. Dubé: The exact computation paradigm, 2nd edition, 1995.

 24

Many predicates include only expressions involving operations +, -, *. Such
problems are called rational.. A rational number can be exactly stored as a
pair of arbitrary precision integers representing numerator and
denominator respectively. Practically, division operation can be avoided in
rational predicates. As instance CGAL::Gmpq is a rational number allowed
by the support library of CGAL

Homogeneous Representation: Homogeneous coordinates known from
projective geometry and computer graphics can also be used to avoid
division. In Homogeneous representation, a point in d-dimensional affine
space with Cartesian coordinates 0 1 1(, ,)dx x x −… is represented by a vector

0 1 1(, , ,)d dhx hx hx hx−… such that i i dx hx hx= for all 0 1i d≤ ≤ − . The homogenizing
coordinates dhx is a common denominator of the coordinates. The
intersection of two lines is a well-known example (Fig. 2.7) to see the
advantage of Homogeneous representation.

Interval arithmetic : In interval arithmetic real numbers are represented
by intervals, whose endpoints are floating-point numbers. Principal, a literal
x is defined as interval [,]start endx x . Basic operations for bounded intervals
defined as follows:

[] [] []
[] [] []
[] [] []
[] [] [] [] []

, , ,

, , ,

, , min(, , ,), max(, , ,)

, , , 1 , 1 c , if 0 ,

a b c d a c b d

a b c d a d b c

a b c d ac bc ad bd ac bc ad bd

a b c d a b d c d

+ = + +

− = − −

× =

÷ = × ÷ ÷ ∉

Multi-precision number types / Expression trees: Some programmer
libraries defined special number types with higher precision and better
arithmetic methods to compute exactly. LEDA [Wr02] and CORE [Wr04] are
such libraries that provided also in CGAL.

Fig. 2.7 Avoided division operation by homogeneous representation

 25

As instance, a LEDA::bigfloat number is given by two integers s and e
where s is the significant and e is the exponent. The tuple (s, e) represents
the real number s . 2e. Special bigfloat values behave as defined by the
IEEE floating point standard such as{ , 0, }NaN ± ±∞ . Arithmetic on
bigfloats uses two parameters: prec and mode. Prec is precision of the result
in number of binary digits, and mode is the one of the pre-defined rounding
modes.

Some of these number types support also incrementally constructed
numbers with the four basic operations (+, -, *, /) and k-th root operation. In
order to enable re-computation, expression trees used in CORE::Expr or
LEDA::real to record the computation history of a numerical value. This is
beneficial if input of a computation is produced by previous computations.
Figure 2.8 illustrate a 2D orientation predicate with an expression tree to
find the orientation of three points such as 2, ,p q r∈\ .

Filtering Techniques: With these techniques, useless expensive
calculations can be filtered for efficiency. One of them is Lazy Evaluation
and practically expressions are only evaluated once and then only if the
evaluation is actually needed. More generally, wait as soon as possible to
evaluate an expression. Filtering techniques actually reduce the
computational complexity of an algorithm and rigorously used in CGAL.

Fig. 2.8 An Expression Tree

 26

2.5 CGAL Programmer Interface

In previous section introduced design goals presented to users with the
following C++ concepts in CGAL implementation [Cp05]: Polymorphism
(using inheritance from base classes with virtual functions) and generic
programming. Shortly, CGAL is a well designed adaptation of generic
programming in field Computational Geometry. As a first step in this
subsection, we want to be remembered some terms of this concept. What is
generic programming? A brief answer for this question is founded in [Cd08]
which was also a presentation about CGAL:

"Generic programming is a sub-discipline of computer science that deals with
finding abstract representations of efficient algorithms, data structures, and
other software concepts, and with their systematic organization. The goal of
generic programming is to express algorithms and data structures in a
broadly adaptable, interoperable form that allows their direct use in software
construction."

Templates are program recipes where certain types are only given
symbolically the so called template arguments. The compiler replaces these
arguments with actual types where the program recipe is actually used at
the place of the template instantiation. Using of templates with a classical
example illustrated in Fig 2.9.

STL (Standard Template Library) is a good example for the generic
programming paradigm. The main source of its generality and flexibility be
caused by the separation of concepts and models. Containers, Algorithms,
Function objects and Iterators are four significant abstract models of STL.
STL mechanism and related terms are shown with vector containers in
Fig.2.10. Shortly, Containers are objects that contain other objects.
Sequence Containers are linear accessible such as vector, list, queue, stack.
Associative containers are accessible over a key such as map, set, multimap.
Algorithms act on containers, manipulate the content of containers such as

Definition Instantiation

template <class T>
void swap(T& a, T& b) {

 T tmp;
 tmp = a; a = b; b = tmp;

}

int main(){

 int a,b;
 double x,y;
 swap<int>(a,b);
 swap<double>(x,y);
}

Fig. 2.9 Template Mechanism

 27

sort, search, transform. Iterators are pointers, cycle thru contents of
containers.

C++ introduces generic programming, with templates, but the same
algorithm will not work optimally with every data structure. Sorting a
linked list is different to sorting an array. Sorted data can be searched much
faster than unsorted data. The C++ traits8 technique provides an answer.
An interesting example (copying blocks of data) is below about the using of
traits [Wr13, Wr14] :

 template<class T> class block_util {
 public:
 static void copy(T * dest, const T * src, int n) {
 for(int i=0; i<n; i++) dest[i] = src[i];
 }

8 “Think of a trait as a small object whose main purpose is to carry information used by another object
or algorithm to determine policy or implementation details” say the creator of C++ Bjarne
Stroustrup about traits. [B05]

Fig. 2.10 STL Mechanism.

 28

 };
// The completely general template above, is called the primary class
template. For character data, it is often more efficient to use the standard
library routine memcpy. To make the compiler call memcpy for characters,
define a full specialization of block_util<char> as shown below.

template<> class block_util <char>{
 public:
 static void copy(char* dest, char* src, int n) {
 memcpy(dest, src, n);
 }
 };

Practically, CGAL is a template collection which achieves high flexibility in
use. Choosing the underlying number types and arithmetic for geometric
objects, using different types of arithmetic simultaneously or choosing
between implementations with fast but occasionally inexact arithmetic and
implementations guaranteeing exact computation and exact results are
possible with templates. Furthermore, CGAL programmer interface based
on STL Mechanism. Modifying geometric object properties such as affine
transformations are defined as function objects, and can be applied with
standard STL algorithms. If we need to traverse on edges, points or facets of
a polyhedron then we should use iterators. Using STL containers to store
some objects give better adaptability with CGAL programmer interface. The
following program is a good CGAL example which shows the using STL and
template mechanism. It computes the convex hull of a set of 250 random
points chosen from a sphere of radius 100. It then determines if the
resulting hull is a segment or a polyhedron:

// including the necessary header files for our computations.
#include <CGAL/Homogeneous.h>
#include <CGAL/point_generators_3.h>
#include <CGAL/copy_n.h>
#include <CGAL/Convex_hull_traits_3.h>
#include <CGAL/convex_hull_3.h>
#include <vector>

// selecting a number type for object representations.
CGAL is running on different platforms. Some of the libraries are not
supported for all OS platforms (i.e GMP not offered for Windows). User can
check this with compiler directives.
#ifdef CGAL_USE_GMP
 #include <CGAL/Gmpz.h>
 typedef CGAL::Gmpz NumberType;
#else
 #include <CGAL/MP_Float.h>
 typedef CGAL::MP_Float NumberType;
#endif

// Type definitions

 29

Homogeneous kernel is parameterized with the number type selected above. Here
Polyhedron_3 object uses class Convex_Hull_traits_3 as a trait class.
Segment_3 is an object of geometric kernel; it is used also with selected
kernel representation.
typedef CGAL::Homogeneous<NumberType> Kernel;
typedef CGAL::Convex_hull_traits_3<Kernel> Traits;
typedef Traits::Polyhedron_3 Polyhedron_3;
typedef Kernel::Segment_3 Segment_3;

// A point creator definition. The template Creator_uniform_3 is used with
standart type double and previously defined point type Point_3.
typedef Kernel::Point_3 Point_3;
typedef CGAL::Creator_uniform_3<double, Point_3> PointCreator;

int main()
{

// The class template Random_points_in_sphere_3<Point_3, Creator> is an input
iterator of support library which create points uniformly distributed in an
open sphere. This template is parameterized with above defined PointCreator as
a trait class. Generated 250 points randomly on a sphere of radius 100.0 are
stored into standart vector container with copy_n.
 CGAL::Random_points_in_sphere_3<Point_3, PointCreator> gen(100.0);
 std::vector<Point_3> points;
 CGAL::copy_n(gen, 250, std::back_inserter(points));

// define a generic CGAL::object to hold convex hull.
The algorithm convex_hull_3 computes convex hull from the points which are
stored in vector container above. The result set of this points is stored in
ch_object.
 CGAL::Object ch_object;
 CGAL::convex_hull_3(points.begin(), points.end(), ch_object);

// Now we should determine the type of the result object. This is possible
with the method CGAL::assign. This method is used to checking polymorphic
return types which we need after some geometric constructions.
 Segment_3 segment;
 Polyhedron_3 polyhedron;

 if (CGAL::assign(segment, ch_object))
 std::cout << "convex hull is a segment " << std::endl;

 else if (CGAL::assign (polyhedron, ch_object))
 std::cout << "convex hull is a polyhedron " << std::endl;

 else
 std::cout << "convex hull error!" << std::endl;

 return 0;
}

2.5.1 Circulators

Since circular sequences do not allow for efficient iterators, CGAL have
introduced the new concept of circulators. This is a relevant concept for
Computational Geometry applications. They share most of the requirements

 30

of iterators, while the main difference is the lack of a past-the-end position
in the sequence. The concept of iterator in STL is tailored for linear
sequences. In contrast, circular sequences occur naturally in many
combinatorial and geometric structures. Examples are polyhedral surfaces
and planar maps, where the edges emanating from a vertex or the edges
around a facet form a circular sequence [Cp05].

Circulators have a different notion of reach ability and ranges than
iterators. Due to the circularity of the sequence this is always true if both
circulators refer to items of the same sequence. In particular, c is always
reachable from c. Given two circulators c and d, the range [c,d) denotes all
circulators obtained by starting with c and advancing c until d is reached,
but does not include d, for d c≠ . So far it is the same range definition as for
iterators. The difference lies in the use of [c,c) to denote all items in the
circular sequence, whereas for an iterator i the range [i,i) denotes the
empty range. An example [Cp05] of a generic function contains()
illustrates the use of circulators.

 template <class InputCirculator, class T>
 bool contains(InputCirculator c, InputCirculator d, const T& value) {

 if (c != NULL) {
 do {

 if (*c == value) return true;

 } while (++c != d);
 }

 return false;
 }

2.5.2 Assertions and Checks

CGAL has a modularized project structure. As instance, separate modules
for convex hull computation and point set triangulation. It is important to
test modules independently and as early as possible. One specific technique
for quality assurance are assertions, assertions of invariants of an algorithm
and the self-checking of functions at runtime. They are of great help in the
implementation process and can reduce debugging efforts drastically. The
user should be able to switch of the checking e.g when code goes in
production mode. There are four types of checks [Cd02]:

• Pre-conditions check if a routine has been called in a proper fashion.
• Post-conditions check if a routine does what it promises to do.

 31

• Assertions are other checks that do not fit in the above two
categories, e.g. they can be used to check invariants.

• Warnings are checks for which it is not so severe if they fail.

Failures of the first three types are errors and lead to a halt of the program,
failures of the last one only lead to a warning. Checks of all four categories
can be marked with one or both of the following attributes.

• Expensive checks take considerable time to compute. “Considerable”
is an imprecise phrase. Checks that add less than 10 percent to the
execution time of their routine are not expensive.

• Exactness checks rely on exact arithmetic. For example, if the
intersection of two lines is computed, the post-condition of this
routine may state that the intersection point lies on both lines.

By default, all standard checks (without any attribute) are enabled, while
expensive and exactness checks are disabled [Cd02]. It is however possible to
turn those on/off through the use of compile time switches. Following
switches makes disable the standard checks:

• CGAL_KERNEL_NO_PRECONDITIONS
• CGAL_KERNEL_NO_POSTCONDITIONS
• CGAL_KERNEL_NO_ASSERTIONS
• CGAL_KERNEL_NO_WARNINGS

And the following switches can be used to to make enable the expensive and
exactness checks:

• CGAL_KERNEL_CHECK_EXPENSIVE
• CGAL_KERNEL_CHECK_EXACTNESS

2.5.3 I/O Streams

All classes in the CGAL kernel provide input and output operators for IO
streams. The basic task of such an operator is to produce a representation of
an object that can be written as a sequence of characters on devices as a
console, a file, or a pipe. In CGAL, mode of the IO-stream can take one of
this predefined enumeration property:

Mode = { ASCII = 0 , BINARY , PRETTY };

In ASCII mode, objects are written as a set of numbers, e.g. the coordinates
of a point or the coefficients of a line, in a machine independent format. In

 32

BINARY mode, data are written in a binary format, e.g. a double is
represented as a sequence of four byte. The format depends on the machine.
The mode PRETTY serves mainly for debugging as the type of the geometric
object is written, as well as the data defining the object. For example for a
point at the origin with Cartesian double coordinates, the output would be
PointC2(0.0, 0.0). At the moment CGAL does not provide input
operations for pretty printed data. By default a stream is in ASCII mode
[Cd01].

CGAL provides the following functions to modify the mode of an IO stream.

• IO::Mode set_mode (std::ios& s, IO::Mode m)
• IO::Mode set_ascii_mode (std::ios& s)
• IO::Mode set_binary_mode (std::ios& s)
• IO::Mode set_pretty_mode (std::ios& s)

Following example shows using IO-Streams with CGAL objects:

 typedef CGAL::Point_2< CGAL::Cartesian<double> > Point;
 typedef CGAL::Segment_2< CGAL::Cartesian<double> > Segment;

 Point p, q;
 Segment s;

 CGAL::set_ascii_mode(std::cin);

 std::cin >> p >> q;

 std::ifstream f("data.txt");
 CGAL::set_binary_mode(f);

 f >> s >> p;

 33

2.6 Kernel Objects and Operations

Simple geometric objects such as points, vectors, lines and operations on
them are took place in CGAL kernel. Defined algorithms in the CGAL either
use these simple objects as an argument or return as the result of
operations. Kernel objects are summarized in Table 2.2.

A point is a point in the Euclidean space Ed, a vector is the difference of two
points 2 1,p p and denotes the direction and the distance from 1 2 p to p in the
vector space dE . They are different mathematical concepts. These concepts
should be well separated. Trying to add two points to each other or taking
the distance from a vector to a point will lead to compilation errors.

CGAL defines a symbolic constant ORIGIN, which denotes the point at the
origin. This constant can be used to convert between vectors and points in
an efficient way. We can subtract two points from each other, in which case
we get a vector, and can add a vector to a point, resulting in a point. In the
same way it is possible to subtract the ORIGIN from a point, resulting in a
vector with the same coordinates as the point, and we can add a vector to the
ORIGIN, resulting in a point with the same coordinates as the vector. The
value ORIGIN is used as the ORIGIN in all dimensions [Cd01, Cd09]. See the
following example:

 Point_2 < Cartesian<double> > p(1.0, 1.0), q;
 Vector_2 < Cartesian<double> > v;

 v = p - ORIGIN; // Result is vector(1.0,1.0)
 q = ORIGIN + v*2; // Result is point(2.0,2.0)

 Vector_2 < Cartesian<double> > v2(q-p); // identical v2(1.0,1.0)

2-D 3-D d-D
Aff_transformation_2
Bbox_2
Circle_2
Direction_2
Iso_rectangle_2
Line_2
Point_2
Ray_2
Segment_2
Triangle_2
Vector_2

Aff_transformation_3
Bbox_3
Direction_3
Iso_cuboid_3
Line_3
Plane_3
Point_3
Ray_3
Segment_3
Sphere_3
Tetrahedron_3
Triangle_3
Vector_3

Aff_transformation_d
Direction_d
Hyperplane_d
Iso_box_d
Line_d
Point_d
Ray_d
Segment_d
Sphere_d
Vector_d

Table 2.2. Kernel Objects.

 34

Lines (Line_2, Line_3) in CGAL are oriented. In two-dimensional space,
they induce a partition of the plane into a positive side and a negative side.
Any two points on a line induce an orientation of this line. A ray (Ray_2,
Ray_3) is semi-infinite interval on a line, and this line is oriented from the
finite endpoint of this interval towards any other point in this interval. A
segment (Segment_2, Segment_3) is a bounded interval on a directed line,
and the endpoints are ordered so that they induce the same direction as that
of the line.

Geometric objects defined in CGAL Kernel, has mostly more than one
constructor. As instance, planes are affine subspaces of dimension two in E3,
passing through three points, or a point and a line, ray, or segment. Just
like lines, planes are oriented and partition space into a positive side and a
negative side [Cd01]. Following definitions obtained from Reference pages of
CGAL which can be seen seven different constructor and the definition of
plane.

CGAL::Plane_3<Kernel>

Definition : An object h of the data type Plane_3<Kernel> is an oriented plane in the three
dimensional Euclidean space E3. It is defined by the set of points with Cartesian coordinates (x,y,z)
that satisfy the plane equation h : a x + b y + c z + d = 0 . The plane splits E3 in a positive and a
negative side. A point p with Cartesian coordinates (px, py, pz) is on the positive side of h, iff a px +
b py +c pz + d > 0. It is on the negative side, iff a px + b py +c pz + d < 0.

Creation :
Plane_3<Kernel> h(Kernel::RT a, Kernel::RT b, Kernel::RT c, Kernel::RT d);
Plane_3<Kernel> h(Point_3<Kernel> p, Point_3<Kernel> q, Point_3<Kernel> r);
Plane_3<Kernel> h(Point_3<Kernel> p, Vector_3<Kernel> v);
Plane_3<Kernel> h(Point_3<Kernel> p, Direction_3<Kernel> d);
Plane_3<Kernel> h(Line_3<Kernel> l, Point_3<Kernel> p);
Plane_3<Kernel> h(Ray_3<Kernel> r, Point_3<Kernel> p);
Plane_3<Kernel> h(Segment_3<Kernel> s, Point_3<Kernel> p);

As instance, first constructor creates a plane h defined by the equation

. . . 0x y za p b p c p d+ + + = . h is degenerate if a b c= = . Second constructor
creates a plane h passing through the points p, q and r. The plane is
oriented such that p, q and r are oriented in a positive sense (that is counter-
clockwise) when seen from the positive side of h. h is degenerate if the points
are collinear. Third constructor introduces a plane h that passes through
point p and that is orthogonal to v etc.

Useful operators (e.g. == , != , []) are overloaded in the definition of some
kernel objects. Objects have some predicates and miscellaneous methods.
Following method interface belong bto the kernel object Triangle_3, is
also obtained from reference pages of CGAL.

 35

Operations :
Bool t.operator==(t2) Test for equality: two triangles t and t2 are

equal, iff there exists a cyclic permutation of the vertices of t2, such
that they are equal to the vertices of t.

Bool t.operator!=(t2) Test for inequality.
Point_3<Kernel> t.vertex (int i) returns the i'th vertex modulo 3 of t.
Point_3<Kernel> t.operator[](int i) returns vertex(int i).
Plane_3<Kernel> t.supporting_plane() returns the supporting plane of t, with

same orientation.
Predicates:
bool t.is_degenerate()t is degenerate if its vertices are collinear.
bool t.has_on (Point_3<Kernel> p) A point is on t, if it is on a

vertex, an edge or the face of t.
Miscellaneous:
Kernel::FT t.squared_area()returns a square of the area of t.
Bbox_3 t.bbox() returns a bounding box containing t
Triangle_3<Kernel> t.transform (Aff_transformation_3<Kernel> at)returns

the triangle obtained by applying at on the three vertices of t.t

Full dimensional objects and their boundaries are represented by the same
type, e.g. halfspaces and hyperplanes are not distinguished, neither are
balls and spheres and discs and circles. Such objects split the ambient space
into two full-dimensional parts, a bounded part and an unbounded part (e.g.
circles), or two unbounded parts (e.g. hyperplanes). By default these objects
are oriented, i.e., one of the resulting parts is called the positive side, the
other one is called the negative side. Both of these may be unbounded. For
these objects there is a function oriented_side() that determines
whether a test point is on the positive side, the negative side, or on the
oriented boundary. These function returns a value of type Oriented_side.
Those objects that split the space in a bounded and an unbounded part,
have a member function bounded_side() with return type
Bounded_side. If an object is lower dimensional, e.g. a triangle in three-
dimensional space or a segment in two-dimensional space, there is only a
test whether a point belongs to the object or not. This member function,
which takes a point as an argument and returns a boolean value, is called
has_on(). This geometric predicates return some enumerations. This
enumeration types and their possible values listed in table 2.3.

Enum Values
Angle { OBTUSE, RIGHT, ACUTE }

Bounded_side { ON_UNBOUNDED_SIDE,
 ON_BOUNDARY,

 ON_BOUNDED_SIDE }

Comparison_result {SMALLER,EQUAL,LARGER}

Sign { NEGATIVE, POSITIVE, ZERO }

Oriented_side { ON_NEGATIVE_SIDE,

 36

 ON_ORIENTED_BOUNDARY,
 ON_POSITIVE_SIDE }

Orientation { RIGHT_TURN = NEGATIVE,
 LEFT_TURN = POSITIVE,
 COLLINEAR = ZERO,
 CLOCKWISE = NEGATIVE
 COUNTER_CLOCKWISE = POSITIVE,
 COPLANAR = ZERO,
 DEGENERATE = ZERO }

Table 2.3. Enumerations.

Predicates are at the heart of CGAL kernel. CGAL uses the term predicate
in a generalized sense. CGAL provides predicates for the orientation of point
sets (orientation, leftturn, rightturn, collinear, coplanar), for comparing
points according to some given order, especially for comparing Cartesian
coordinates (e.g. lexicographically_xyz_smaller), in-circle and in-sphere tests,
and predicates to compare distances.

Fig. 2.11 illustrates the orientation results of three points, which defined as
a type Point_2 with the predicate CGAL::orientation (p1, p2, p3).

Moreover, some member functions of kernel objects are constructions.
Functions and function objects that generate objects that are neither of type
bool nor enum types are called constructions such as circumcenter(), or
centroid(). Constructions involve computation of new numerical values
and may be imprecise due to rounding errors unless a kernel with an exact
number type is used. CGAL also provides a set of functions that detect or
compute the intersection between objects of the 2D kernel, and many objects
in the 3D kernel, and functions to calculate their squared distance.

Some functions can return different types of objects. The class Object
provides an abstraction. An object obj of the class Object can represent

Fig. 2.11 Possible orientation results of three points.

 37

an arbitrary class. This is done with the global function make_object().
This encapsulation mechanism requires the use of assign to use the
functionality of the encapsulated class. In the following example, the
Object class is used as return value for the intersection computation
between two segment, as there are possibly different return values (in this
fall segment or point).

 Object obj = CGAL::intersection(segment_1, segment_2);

 if (assign(point, obj)) {/* do something with point */ }
 else if (assign(segment, obj)) {/* do something with segment*/}

The kernel operations present two interfaces to the user: global functions
like CGAL::orientation(p,q,r) which are convenient to use separately,
and corresponding functors like Kernel::Orientation_2 which are more
convenient to use with STL algorithms.

2.7 Kernel Representations

Almost all the kernel objects (and the corresponding functions) are
templates with a parameter that allows the user to choose the
representation of the kernel objects. A type that is used as an argument for
this parameter must fulfil certain requirements on syntax and semantics.
The list of requirements defines an abstract kernel concept. For all kernel
objects the types CGAL::Object<Kernel> and Kernel::Object are
identical. A kernel class as parameter, which itself is parameterized with a
number type, such as Cartesian<double> or Homogeneous
<leda_integer>. CGAL offers some “families” of concrete models for the
concept Kernel, based on the Cartesian or Homogeneous representation of
points [Cd01].

In Cartesian framework, a point is represented by a d-tuple 0 1 -1(, , ...,)dc c c ,
and so are vectors in the underlying linear space. Such Cartesian
coordinates represent each point uniquely.

In Homogeneous framework, a point is represented by a (d+1)-tuple

0 1(, ...)dh h h . Via the formulae /i i dc h h= , the corresponding point with
Cartesian coordinates 0 1 -1(, , ...,)dc c c can be computed. Note that, the
homogeneous representation of a point is not unique; multiplication of the
homogeneous representation vector with any 0λ ≠ gives the representation
of same point.

 38

The interface of the kernel objects is designed such that it works well with
both Cartesian and homogeneous representation. For example, points in 2D
have a constructor with three arguments as well (the three homogeneous
coordinates of the point). The common interfaces parameterized with a
kernel class allow one to develop code independent of the chosen
representation. Here said ``families'' of models, because both families are
parameterized too. A user can choose the number type used to represent the
coordinates.

A kernel class provides two type-names for number types, namely
Kernel::FT and Kernel::RT. The type Kernel::FT must fulfill the
requirements on what is called a FieldNumberType in CGAL. This roughly
means that Kernel::FT is a type for which operations [+,-,*, /] are
defined with semantics (approximately) corresponding to those of a field in a
mathematical sense. The requirements on the type Kernel::RT are
weaker. This type must fulfill the requirements on what is called a
RingNumberType in CGAL. This roughly means that Kernel::RT is a type
for which operations [+,-,*] are defined with semantics (approximately)
corresponding to those of a ring in a mathematical sense.

Furthermore, there is also a type namely EuclideanRingNumberType,
which supports the operations +, - and * as well as a function div, which
performs an integer division, the modulus operator %, that returns the
remainder of integer division and the function gcd.

With Cartesian <FieldNumberType> you can choose a Cartesian
representation of coordinates. A number type used with the Cartesian
representation class should be a FieldNumberType as described above.
With Homogeneous <RingNumberType> you can choose a homogeneous
representation for the coordinates of the kernel objects. Since the
homogeneous representation does not use divisions, the number type
associated with a homogeneous representation class must be a model for the
weaker concept RingNumberType only. All number types supported in
CGAL for these kernel concepts are summarized in Table 2.4 :

Built-in External CGAL Provided

CORE::Expr
CGAL::Gmpz
CGAL::Gmpq

float
double
int

leda_integer
leda_real
leda_bigfloat
leda_rational

CGAL::MP_Float
CGAL::Fixed_precision_nt
CGAL::Interval_nt
CGAL::Interval_nt_advanced
CGAL::Lazy_exact_nt<NT>
CGAL::Filtered_exact<NT1,NT2>
CGAL::Quotient<NT>

Table 2.4 Supported Number Types

 39

The built-in number types float and double have the required arithmetic
and comparison operators. They lack some required routines though which
are automatically included by CGAL. Note that, strictly speaking, the built-
in type int does not fulfil the requirements on a field type, since integers
correspond to elements of a ring rather than a field, especially operation / is
not the inverse of *. With floating point arithmetic, round-off errors may
cause the answer of the check to be false. With the built-in integer types
overflow might occur. CGAL support library provides defined numbers in
different libraries such as CORE, GMP or LEDA.

CGAL provides several number types that can be used for exact
computation. As instance, an object of the class Gmpz is an arbitrary
precision integer based on the GNU Multiple Precision Arithmetic Library.
Necessary libraries should be already installed before using these number
types. This external number types provides exact computations or exact
predicates. The number type MP_Float that is able to represent multi-
precision floating point values. There is two number types for using interval
arithmetic: Interval_nt and Interval_nt_advanced.

Furthermore, CGAL defines some special kernel concepts. The principials of
these concepts are introduced in chapter 2.4. Briefly, these number types
help in doing filtering of predicates. Fixed_precision_nt that provides
24-bit numbers in fixed point representation. This number type provides
some specialized predicates that are exact and efficient for numbers known
to be representable using 24 bits. Quotient<NT> maintains numbers as
quotients, i.e., a numerator and a denominator. It can be used to create a
number type that behaves like a rational number. For example, when used
in conjunction with the number type MP_Float that is able to represent
multi-precision floating point values, you achieve an exact rational number
representation.

An object of the class Lazy_exact_nt<NT> is able to represent any number
which NT is able to represent. The idea is that Lazy_exact_nt<NT> works
exactly like NT, except that it is faster because it tries to only compute an
approximation of the value, and only refers to NT when needed. The goal is
to speed up exact computations done by any exact but slow number type NT.
Filtered_exact<NT1,NT2> is other filtering solution, which has two
arguments for number types. NT1 denotes the construction and storage
type. NT2 type must be able to compute exactly the operations involved in
the predicates called. As a general rule, CGAL advise the use of
Filtered_exact<double, leda_real>. Following code part shows an
example how can be together used these kernel concepts. All of necessary
header files should be included before for necessary kernel representation.

 40

#include <CGAL/Cartesian.h>
#include <CGAL/MP_Float.h>
#include <CGAL/Lazy_exact_nt.h>
#include <CGAL/Quotient.h>

typedef CGAL::Lazy_exact_nt<CGAL::Quotient<CGAL::MP_Float> > NT;
typedef CGAL::Cartesian<NT> K;

It is depend on model of geometric computation which kernel you should
use. If it is crucial for you that the computation is reliable, the right choice
is probably a number type that guarantees exact computation. Additionally,
for the user's convenience, CGAL has generally useful 3 predefined kernels.
They are all Cartesian kernels; support constructions of points from double
Cartesian coordinates, all provide exact geometric predicates. They handle
geometric constructions differently [Cd01].

• Exact_predicates_exact_constructions_kernel
• Exact_predicates_exact_constructions_kernel_with_sqrt
• Exact_predicates_inexact_constructions_kernel

Note that, second one supports the square root operation exactly but it
requires CORE or LEDA installed. Third one here provides exact geometric
predicates but inexact geometric constructions for time-efficiency.

 41

2.8 Polyhedral Structures

To applying Boolean set operations on 3D solid objects, we use two different
parts of algorithm library, which are named in CGAL as 3D-Polyhedral
Surfaces and 3D-Nef Polyhedron. The algorithms described in this parts of
library, are based on the related mathematical concepts of field solid
modelling. Solid modelling is a branch of geometric modelling that
emphasizes the general applicability of models, and insists on creating only
complete representations of physical solid objects, i.e. representations that
are adequate for answering arbitrary geometric questions with algorithms.

In this section first, we want to clarify the terms and definitions, which exist
in the relevant sections of CGAL documentation. These explanations are
summarized from different books at the start of this study. We want to
introduce here basic principals that are focused to Nef-Polyhedra, with the
terminology of branch solid modelling.

2.8.1 Related Topics

2.8.1.1 Topological Foundations

We can represent a solid unambiguously by describing its surface and
topologically orienting it such that we can tell, at each surface point, on
which side the solid interior lies. This description has two parts. A
topological description specifies vertices, edges, and faces abstractly, and
indicates their incidences and adjacencies. And the geometric description
specifies, for example, the equations of the surfaces of which the faces are a
subset [B04].

Fig. 2.12 Spaces [B09].

 42

A space is a set of points. We make this notion slightly richer with the
addition of topology. We think of topology as the knowledge of the
connectivity of a space: Each point in the space knows which points are near
it, that is, in its neighbourhood. In other words, we know how the space is
connected. We call such a space a topological space. The defined certain
subsets of this space are associated to the points of the space as their
neighbourhoods [B09]. A metric space has an associated metric, which
enables us to measure distances between points in that space and, in turn,
implicitly define their neighbourhoods. Depending upon which axioms these
neighbourhoods satisfy, one distinguishes between different types of
topological spaces. The most important among them are the so called
Hausdorff spaces and well-known Hausdorff axioms9 [B10].

Topology not concerned the forms of shapes. Two topological spaces are
homeomorphic to each other or topologically equivalent if there is a
homeomorphism between them. Following surfaces in Fig.2.15 are
topologically equivalent. The surface of a tetrahedron is a triangulation of a
sphere, as its underlying space is homeomorphic to the sphere.

Consequently, the most general mathematical abstraction of a real solid
object is a subset of Euclidian space E3, which a suitable idealization of the
real space our real objects lie in. Characterization of local space around
geometric primitives, a.i points is consequent for computational geometry.
This point of view leads us to using the languages of point-set topology and
algebraic topology respectively. The advantage of the point set idealization
of real objects is that we can use concepts of point set topology to
characterize rigorously the desired properties of 3D-objects [B07]. After this
informal overview, please see the following definition from [B07]:

9 This axioms are following:
• To each point x there correspond at least one neighbourhood U(x) ; each neighbourhood U(x) contains the point x.
• If U(x), V(x) are two neighbourhoods of the same point x, then there exist a neighbourhood W(x), which is subset of

both.
• If the point y lies in U(x), there exist a neighbourhood U(y) , which is a subset of U(x) .
• For two distinct point x, y there exist two neighbourhoods U(x) ,U(y) without common points.

Fig. 2.13 Homeomorphic surfaces.

 43

Definition: A solid is a bounded, closed subset of E3.

The words open and closed are used in a very deliberate manner, reflecting a
more general concept about to be defined for all n\ . Intuitively, an open set
is a set does not contain its boundary; an closed set is one that does contain
its boundary. Boundary, Interior and closure are also topological properties
of sets. Following definition obtained from [B09]:

Definition : Let X be a topological space and A X⊆ . The interior of A,
denoted int()A the union of all open sets contained in A. The closure of A,
denoted cl()A is the intersection of all closed sets containing A. The
boundary of A, denoted cl() int()A A A∂ = − .

A boundary model partition the 3 dimensional space into three regions that
we may call the interior, the surface, and the exterior, respectively. Interior
of solid is a subset of points that bounded by a closed surface around it. The
boundary may be attached either to the interior or to the exterior but not to
both. The subset that has the boundary attached to it is called a closed
subset. The complement of this subset is called an open subset. The

Fig. 2.14 A X⊆ and related sets [B09].

Fig. 2.15 Boundary model.

 44

boundary is distinguished from the interior and the exterior in that each
point of the boundary has no neighborhood that is completely contained in
the interior or the exterior [B04, Wr16].

2.8.1.2 2-Manifold Surfaces

The boundary of a solid must satisfy some conditions so that the resulting
solid is well-behaved. This is the so-called manifold condition. A large
segment of the literature requires that the surface represented by a
boundary representation be a closed, oriented 2-manifold embedded in 3
dimensional spaces [B04]. This condition defined as follows, in the book of
Mäntylä [B07] which was the one of the first bibles of branch solid
modelling:

Definition: A 2-Manifold M is a topological space where every point has a
neighbourhood topologically equivalent to an open disk of E2.

We have been searched quite a lot, to find a simple way to explain, this more
important condition of branch solid modelling, in related literature.
Fortunately, we have been found in a web-site [Wr15] an explanation about
it rather more practically but also definitive. Understanding of manifold
condition was relative important for our implementation.

This manifold condition can be explained more easily with the help of the
definition of Open ball. To describe the openness/closeness is a general
definition which can be interpreted for different dimensions. This definition
and following example obtained from [B08].

Definition : Let np∈\ be a point, and let r>0 be a number. The open ball
in n\ of radius r centered at p is the set of points { }(,) |n n

rO p q q p r= ∈ − <\ \ ,
and closed ball in n\ of radius r centered at p is the set of points

{ }(,) |n n
rO p q q p r= ∈ − ≤\ \ . More generally, open ball in any subset nA⊂ \ is

set of points (,) (,)n
r rO p A O p A= ∩\ and defined by

{ }(,) | rO p A q A q p r= ∈ − <

Example: Let 2A⊂ \ be
the square [0,4] [0,4]× .
Some open discs and a
closed disc are illustrated
in figure 2.16.

Fig. 2.16 Open and closed discs.

 45

A surface is a 2-manifold if and only if for each point x on the surface there
exists an open ball with centre x and sufficiently small radius so that the
intersection of this ball and the surface can be continuously deformed to an
open disk. By continuously deformed, it means under affine transformations
such as rotate, scale or bend but not cutting or gluing [Wr15].

In the figure 2.17, first one is a 2-manifold surface, since the intersection of
the open balls with cube somewhere on the face, edge and vertices is open
disks. Some of them bended open disks. However, they are equivalent to
open disks. The next figure on the right shows a solid whose bounding
surface is not a manifold. The intersections of the open ball and the surface
of the solid is the union of two intersecting open disks. These intersections
cannot be deformed to an open disk without "gluing." Consequently, the
surface is not a manifold [Wr15].

Simplexes give a computer realizable model for solid boundaries. The basic
building blocks are simplexes of various dimensions that are put together in
particular ways to obtain manifolds. Point, line segment, triangle and
tetrahedron are low dimensional examples of simplexes (Fig 2.18). We use
convex combinations of points to define simplexes in general dimensions.
One could also define a simplex as the smallest closed convex set which
contains the given vertices. More details and formal definitions discussed in
[B04, B10].

Fig. 2.17 A 2-manifold surface (left) and a surface with non-manifold

boundaries (right).

Fig. 2.18 Low-dimensional simplices.

 46

Since the face definition of a simplex described also with simplexes
recursively, simplexes is well-defined theory for a computer realization. The
following definition is obtained from the book of Hoffman [B04]:

Definition: A d-simplex S is the convex combination of d+1 affinely
independent point, and dim()S d= . The boundary of a d-simplex S, consist
of all (d-k)-simplices contained in S, where k > 0 , and is denoted S∂ . Every
simplex in the boundary of S is a face of S. A k-simplex that is a face also
called k-face.

Clearly, 0-simplex is a point and a 3-simplex is a tetrahedron. A 2-simplex
(triangle) has three 1-face (edges), also has three 0-face (vertices).

In addition, an oriented simplex is a simplex with a particular sense of
rotation or with a particular ordering of its vertices; at the same time, no
distinction is made between orderings which differ
from one another by an even permutation, so that

0 1 2(),v v v 1 2 0(),v v v 2 0 1()v v v represent one orientation, and
0 2 1(),v v v 1 0 2(),v v v 2 1 0()v v v represent the other orientation of

the 2-simplex whose has the vertices (0-faces)
0 1 2, v v and v [B10]. In small figure, an oriented 3-simplex

is illustrated which has three oriented(counter-
clockwise) 2-faces.

In conclusion, a manifold surface has the property that, around every one of
its points, there exist a neighbourhood that is homeomorphic to the plane. In
addition, a manifold surface is orientable if we can distinguish two different
sides. Closed, orientable manifolds partition the space into three regions
that may call the interior, the surface, and the exterior. Manifold properties
give us a solid classification in boundary models, and also important to
testing the validity of the solid boundaries topologically [B04].

2.8.1.3 Solid Representations

We want to give also some details about two major solid representation
schemes which is also related with our study. These are named Constructive
Solid Geometry (CSG) and Boundary Representation (B-Rep).

In CSG a solid is represented as a set-theoretic boolean combination of
primitive solid objects, such as blocks, prisms, cylinders, or toruses. The
boolean operations are not evaluated, instead, objects are represented
implicitly with a tree structure; leaves represent primitive objects and
interior nodes represent boolean operations and transformations.
Algorithms on such a CSG-tree first evaluate properties on the primitive

 47

objects and propagate the results using the tree structure [Cd01]. This
representation is illustrated on the left side of Fig.2.19.

A B-rep (Boundary representation) describes the incidence structure and the
geometric properties of all lower-dimensional features of the boundary of a
solid. Surfaces are oriented to decide between the interior and exterior of a
solid [B04]. Boundary models represent a solid indirectly through
representation of its bounding surface. Right side of the Figure 2.19
illustrates the basic components of a boundary model [B07]. In the figure,
the surface of the object is divided into an enclosing set of faces (a), each of
which is represented in terms of its bounding polygon (b), in turn
represented in terms of edges and vertices (c). To storing a solid which is
represented with B-rep, there are many solutions in literature. One of them
is Halfedge Data Structure (HDS).

HDS is an edge-centered data structure which is capable of maintaining
incidence informations of vertices, edges and faces. An edge centered model
(Fig.2.20) represents a face boundary in terms of a closing sequence of edges
[B07]. HDS used also in CGAL to storing planar maps, polyhedra, or other
orientable, two-dimensional surfaces embedded in arbitrary dimension.
HDS is defined as follows: Each edge is decomposed into two halfedges with

Fig. 2.19 Solid representations.

Fig .2.20 An edge centered model.

 48

opposite orientations, since faces have shared edges. One incident face and
one incident vertex are stored in each halfedge. For each face and each
vertex, one incident halfedge is stored. This data structure is a variation of
the full winged-edge data structure. Briefly, is a five-level hierarchic data
structure, consisting of nodes of type Solid, Face, Loop, Halfedge, and
Vertex. Node Solid forms the root node of an instance of the HDS. The solid
node gives access to to faces, edges and vertices of the model through
pointers. Face represents one planar face of the polyhedron. Node loop
describes one connected boundary of a face. Node Halfedge describes one
line segment of a loop. And node vertex contains a vector of some numbers
that represent a point of E3. Each node handled as doubly-linked lists
internally and has also some pointers to parent nodes and child nodes.
Hierarchic view of the HDS illustrated in Fig.2.21 and more details
discussed in [B07 and Cp08].

In conclusion, in solid modelling, two major representation schemes are
used: CSG and B-rep. The class of represent able objects in a CSG is usually
limited by the choice of the primitive solids. A B-rep is usually limited by the
choice for the geometry of the supporting curves for edges and the
supporting surfaces for surface patches, and, in addition, the connectivity
structure that is allowed. They can be represented and manipulated
efficiently, the data structures are compact in storage size, and many
algorithms are simple. In addition, a B-rep is not always closed under
Boolean set operations [Cd01]. Both have inherent strengths and
weaknesses, are discussed in [B04] with more details. In consequence, there
is a discernible tendency to combine both CSG and B-rep in an effort to take
advantage of the different strong points afforded by each [B04]. Such
modellers are called dual-representation modellers. NEF-Polyhedra are a
good example for this kind of modeller. It evaluates a CSG-tree with
halfspaces as primitives and converts it into a B-rep representation.

2.8.1.4 Halfspace Intersections

An unbounded straight line or plane curve divides the two dimensional
space into two semi-infinite regions, called half-spaces. Similarly, an
unbounded plane or surface divides the three dimensional space into two

Fig. 2.21 Hierarchic view of half-edge data structure.

 49

semi-infinite regions. These are also called half-spaces. We can combine
half-spaces using the set theoretic union, intersection and difference
operators to create geometric models of two and three dimensional shapes
[B11].

All constructive models consider solids as point set of E3. Their basic idea is
to start from sufficiently simple point sets that can be represented directly,
and model other point sets in terms of very general combinations of the
simple sets. So called halfspace-models apply this approach in a direct
fashion [B07].

Every point set A can be thought of as having a characteristic function

: {0,1}Am P → which tells whether a point p P∈ is considered to be a member
of A or not. For every general point set characteristic functions do not offer
much help, because their representation would be as hard as the
representation of the sets themselves. However, for an interesting class of
point sets Am can be represented in terms of real valued analytic function
h(p) defined everywhere in 3E [B07].

In this case, for a half space bounded by a straight line, let (,)h x y ax by c= + + ,
where h denotes a half space. For a halfspace bounded by a plane we can
use the equation (, ,)h x y z ax by cz d= + + + . Any combination that satisfies the
equation so that 0h = is on the line, the boundary of the half-space. Other
values of x and y produce an inequality, either 0h > or 0h < , geometrically
means inside or outside of halfspace. To reverse inside/outside classification
we can change the sign of h . One general principle for these techniques is:
Preserve dimensional homogeneity. You should not mix two and three
dimensional half-spaces [B11].

 Fig. 2.22 Two and three dimensional bounded halfspaces..

 50

Half spaces can combine to form complex shapes that are closed and
bounded. To do this use Boolean operators, principally the intersect
operator. When H denotes a combination of two or more halfspaces then
express the intersection of these halfspaces as

1

n

i
i

H h
=

=∩

Note that H is not necessarily a closed finite region. We can use union,
difference and complement operator to combine different intersections.
When B denotes a boundary of a solid form we can combine different closed
forms as

1 1

m n

ij
i i

B h
= =

=∪ ∩

And the following conditions present the possible point classifications with
respect to intersection of halfspaces [B11].

1. If and only if a point inside all hi , then inside H.
2. If and only if a point is outside at least one hi , then it is outside H.
3. If and only if a point is on the boundary of at least one hi , and inside

the remaining hi , then it is on the boundary of H.

2.8.1.5 Regularized Set Operations

Some Boolean set operations on solids can give “parasitic” results. Consider,
for instance the case depicted in figure 2.24. The intersection of the two
objects consists of a rectangular object plus a “dangling” line segment.

Fig. 2.23 Halfspace intersections.

 51

To eliminate these lower dimensional branches, the three set operations are
regularized as follows [Wr15].

• Compute the result as usual and lower dimensional components many be

generated.
• Compute the interior of the result. This step removes all lower

dimensional components. The result is a solid without its boundary.
• Compute the closure of the result obtained in the above step. This adds the

boundary back.

Following definition is obtained also from book of Mäntylä [B07]:

Definition: The regularized set operations union*, intersection*, and set
difference*, denoted by * * *, and∪ ∩ − defined as

* * * (int()) (int()) (int())A B cl A B A B cl A B A B cl A B∪ = ∪ ∩ = ∩ − = −

Where , and∪ ∩ − denote the usual set operations.

Fig 2.24 Parasitic result of a non-regular set operation.

 52

2.8.2 3D-Polyhedral Surfaces

Polyhedral surfaces in three dimensions are a part of CGAL algorithms
library. A boundary representation of a polyhedral surface consists of a set
of vertices V, a set of edges E, a set of facets F, and an incidence relation on
them. The organization beneath is a halfedge data structure, which restricts
the class of represent able surfaces to orientable 2-manifolds - with and
without boundary. If the surface is closed, it is called as polyhedron [Cd01].
Topology and Geometry is separated in the design of the polyhedral
surfaces. Figure 2.25 shows the design of this surface library [Cp08].

The two types of boundary representations are 2-manifold and non-
manifold Surfaces. The next distinction is between orientable and non-
orientable 2-manifold surfaces. Without going into details, a surface is
orientable if a consistent orientation can be assigned to each facet such that
for each edge the two incident facets have opposite orientations at this edge.
CGAL provide only orientable 2-manifolds with this part of library.

Vertices, halfedges and facets store both topology and geometry. The
container class Halfedge_data_structure manages these three items
and their topological relations. The Topological_map adds to the halfedge
data structure the management for holes in facets, which enumerates inner
and outer boundaries for facets. The Polyhedron adds geometric operations
to the Halfedge_data_structure. It is based on the definition of oriented
polyhedral complex for polyhedral surfaces and guarantees a consistent
representation. The Planar_map is based on the topological map, since it
maintains holes in facets [Cd01, Cp08].

Fig.2.25 The design of 3D-Polyhedral surfaces in three dimensions [Cp08].

 53

The definition for polyhedral surfaces obtained from Steinitz10. This
definition is of combinatorial nature, which makes reasoning about the data
structure more convenient, for example that the same facet cannot appear
on both sides of an edge. And it leads directly to the integrity definition and
related test function of the polyhedral surface data structure [Cp08].

Definition: A structural complex is a union C V E F= ∪ ∪ of three disjoint
sets together with an incidence relation. We call V the vertices, E the edges
and F the facets of the structural complex. The incidence relation on C must
be symmetric. No two elements from the same set V , E or F are incident. If
v V∈ is incident to e E∈ and e is incident to f F∈ then v is incident to f.

Definition: A polyhedral complex is a structural complex with four
additional conditions.

(1) Every edge is incident to two vertices.
(2) Every edge is incident to two facets.
(3) For every incident pair v, f there are exactly two edges incident to both.
(4) Every vertex and every facet is incident to at least one other element.

The neighbourhood of a vertex is the edges and facets incident to the vertex.
If the incidence relation is restricted to this neighbourhood, then by
condition (3) each facet is incident to exactly two edges, and by condition (2)
each edge is incident to exactly two facets. Thus, the neighbourhood
decomposes into disjoint cycles, where each cycle is an alternating sequence
of edges and facets. A polyhedral complex is a 2-manifold if and only if the
neighbourhood of each vertex decomposes into a single cycle. The definition
of a polyhedral complex is symmetric for vertices and facets. A
symmetrically defined neighbourhood of a facet decomposes into cycles of
incident edges and vertices. Assuming that the neighbourhood of each facet
is a single cycle (geometrically, the boundary of the facet is a single
connected component so the facet has no holes), we can define a polyhedral
complex to be oriented if each cycle around a facet is oriented and if, for
each edge, the two cycles of its two incident facets are oriented in opposite
directions. A polyhedral complex is orientable if there is such an orientation
[Cp08].

The surface defined by such a boundary representation is an orientable 2-
manifold. Some useful properties are for example that the neighborhoods of
two vertices have at most one edge and two facets in common, the edge and
vertex graphs are connected within each connected component of the surface
and each facet has at least three edges on its boundary [Cp08].

10 E.Steinitz and H.Rademacher, Vorlesung über die Theorie der Polyeder unter Einschluß der Elemente der
Topologie. Springer, 1934

 54

The class CGAL::Polyhedron_3<Traits> can represent polyhedral
surfaces in three dimensions as well as polyhedra. The polyhedral surface is
realized as a container class that manages vertices, halfedges, facets with
their incidences, and that maintains the combinatorial integrity of them. It
is based on the flexible design of the halfedge data structure. Vertices
represent points in 3d-space. Edges are straight line segments between two
endpoints. Facets are planar polygons without holes defined by the circular
sequence of halfedges along their boundary. The polyhedral surface itself
can have holes. The halfedges along the boundary of a hole are called
border halfedges and have no incident facet. An edge is a border edge if
one of its halfedges is a border halfedge. A surface is closed if it contains no
border halfedges. A closed surface is a boundary representation for
polyhedra in three dimensions. The smallest representable surface with
CGAL::Polyhedron_3<Traits> is a triangle (for polyhedral surfaces with
border edges) or a tetrahedron (for polyhedra).

The convention is that the halfedges are oriented counter-clockwise around
facets as seen from the outside of the polyhedron. The notion of the solid side
of a facet as defined by the halfedge orientation extends to polyhedral
surfaces with border edges although they do not define a closed object. If
normal vectors are considered for the facets, normals point outwards as
shown on the right side of Fig.2.26.

Since formal definition and details of all properties of this class can be found
in CGAL documentation, we want to give a more practical overview, which
is focused to our implementation. The full template declaration of
Polyhedron_3<Traits> states four template parameters:

template < class PolyhedronTraits_3,

Fig. 2.26 Incidence relations of a halfedge (left) and facet orientations of a

polyhedral surface (right).

 55

 class PolyhedronItems_3 = CGAL::Polyhedron_items_3,
 template < class T, class I>
 class HalfedgeDS = CGAL::HalfedgeDS_default,
 class Alloc = CGAL_ALLOCATOR(int)>
class Polyhedron_3;

The first parameter requires a model of the PolyhedronTraits_3 concept
as argument, for example CGAL::Polyhedron_traits_3. As discussed in
previous sections, it is also possible to use a kernel representation as a traits
class. The second parameter expects a model of the PolyhedronItems_3
concept. By default, the class CGAL::Polyhedron_items_3 is selected.
This class provides definitions for vertices with points, half-edges, and faces
with plane equations. The third parameter is a class template. A model of
the HalfedgeDS concept is expected. By default, the class
CGAL::HalfedgeDS_default is selected, which is a list based
implementation of the half-edge data structure. The fourth parameter
Alloc requires a standard allocator for STL container classes. These
arguments make possible to describe more specific implementations based
on this class. In our implementation we work with default trait classes,
more details about these arguments can be found in [Cd01].

Following example instantiate a Polyhedron_3<Traits> using a kernel as
traits class. It creates a tetrahedron and stores the reference to one of its
halfedges in a Halfedge_handle. The example continues with a test if the
halfedge actually refers to a tetrahedron. This test checks the connected
component referred to by the halfedge h and not the polyhedral surface as a
whole. This example works only on the combinatorial level of a polyhedral
surface.

#include <CGAL/Cartesian.h>
#include <CGAL/Polyhedron_3.h>

typedef CGAL::Cartesian<double> Kernel;
typedef CGAL::Polyhedron_3<Kernel> Polyhedron;
typedef Polyhedron::Halfedge_handle Halfedge_handle;

int main() {

 Polyhedron P;

 Halfedge_handle h = P.make_tetrahedron();
 if (P.is_tetrahedron(h))
 return 0;

 return 1;
}

 56

Following example adds the geometry. Four points are passed as arguments
to the construction. This example demonstrates in addition the use of the
vertex iterator and the access to the point in the vertices.

#include <CGAL/Cartesian.h>
#include <CGAL/Polyhedron_3.h>
#include <iostream>

typedef CGAL::Cartesian<double> Kernel;
typedef Kernel::Point_3 Point_3;
typedef CGAL::Polyhedron_3<Kernel> Polyhedron;
typedef Polyhedron::Vertex_iterator Vertex_iterator;

int main() {

 Point_3 p(1.0, 0.0, 0.0);
 Point_3 q(0.0, 1.0, 0.0);
 Point_3 r(0.0, 0.0, 1.0);
 Point_3 s(0.0, 0.0, 0.0);

 Polyhedron P;
 P.make_tetrahedron(p, q, r, s);

 CGAL::set_ascii_mode(std::cout);

 for (Vertex_iterator v = P.vertices_begin(); v != P.vertices_end(); ++v)
 std::cout << v->point() << std::endl;

 return 0;
}

Note the natural access notation v->point(). Similarly, all information
stored in a vertex, halfedge, and facet can be accessed with a member
function given a handle or iterator. For example, given a halfedge handle h
we can write h->next() to get a halfedge handle to the next halfedge, h-
>opposite() for the opposite halfedge, h->vertex() for the incident
vertex at the tip of h, and so on. This operator can be used also
simultaneously for incidences.

 cout << Plane_3(h->vertex()->point(),
 h->next()->vertex()->point(),
 h->next()->next()->vertex()->point());

The Polyhedron_3 offers also a point iterator for convenience. The for-loop
in the example above can be simplified to a single statement by using
std::copy and the ostream-iterator adaptor.

std::copy(P.points_begin(), P.points_end(),
 std::ostream_iterator<Point_3>(std::cout,"\n"));

 57

The class Polyhedron_3<Traits> describes following items for
manipulating HDS:

Handles Iterators Access
Vertex_handle
Halfedge_handle
Facet_handle

Vertex_iterator
Halfedge_iterator
Facet_iterator
Point_iterator
Edge_iterator
Plane_iterator

vertices_begin()… vertices_end()
halfedges_begin()… halfedges_end()
facets_begin()… facets_end()
points_begin()… points_end()
edges_begin()… edges_end()
planes_begin()… planes_end()

Additionally, two circulators are described:

Halfedge_around_vertex_circulator circulator of halfedges around a vertex (cw)
Halfedge_around_facet_circulator circulator of halfedges around a facet (ccw).

Boundary representations of orientable 2-manifolds are closed under Euler
operations, four of them are shown in Figure 2.27. Euler operations are also
described by Polyhedron_3 which modify consistently the combinatorial
structure of the polyhedral surface. The geometry remains unchanged. The
standard Euler operations [B04] are extended with operations that create or
close holes in the surface. [Cp08]. These operations are not used in our
implementation.

To visualize a Polyhedron_3 object is possible with
CGAL::Geomview_stream. An object of the class Geomview_stream is a
stream in which geometric objects can be inserted and where geometric
objects can be extracted from. Using of this stream is discussed in
implementation chapter.

An auxilary class CGAL::Polyhedron_incremental_builder_3<HDS>
helps in creating polyhedral surfaces from a list of points followed by a list
of facets that are represented as indices into the point list. This is

Fig. 2.27 The example results of some Euler operations

 58

particularly useful for implementing file reader for common file formats
such as object file format (OFF).

A modifier mechanism allows accessing the internal representation of the
polyhedral surface, i.e., the halfedge data structure, in a controlled manner.
A modifier is basically a callback mechanism using a function object. When
called, the function object receives the internal halfedge data structure as a
parameter and can modify it. On return, the polyhedron can check the
halfedge data structure for validity. Such a modifier object must always
return with a halfedge data structure that is a valid polyhedral surface. The

validity check is implemented as an expensive post-condition at the end of
the delegate() member function, i.e., it is not called by default, only when
expensive checks are activated. This mechanism illustrated in Fig.2.28.

Modifier_base<R> is an abstract base class from support library
providing the interface for any modifier. A modifier is a function object
derived from Modifier_base<R> that implements the pure virtual member
function operator(), which accepts a single reference parameter R& on
which the modifier is allowed to work. R is the type of the internal
representation that is to be modified.

The incremental builder mechanism is used to creating polyhedrons in our
implementation. Therefore, this class will be explained with details in
implementation chapter. And details about file formats will be also given in
same chapter.

Fig. 2.28 Class diagram illustrating the safe access

 to the internal representation of a polyhedron.

 59

2.8.3 3D-Nef Polyhedron

Partitions of three space into cells are a common theme of solid modelling
and computational geometry. A set of planes partitions space into cells of
various dimensions. The theory of Nef polyhedra has been developed for
arbitrary dimensions. The class CGAL::Nef_polyhedron_3 implements a
boundary representation for the 3-dimensional case. This class offer a B-rep
data structure that is closed under boolean operations and with all their
generality. Starting from halfspaces or directly from oriented 2-manifolds,
CGAL::Nef_polyhedron_3 can work with set union, set intersection, set
difference, set complement operations. Set complement changes between
open and closed halfspaces, The topological operations boundary, interior,
exterior, closure and regularization are also offered with
CGAL::Nef_polyhedron_3. This class can model non-manifold solids,
unbounded solids, and objects comprising parts of different dimensionality
[Cp09].

Definition: A Nef-polyhedron in dimension d is a point set dP ⊆ \ generated
from a finite number of open halfspaces by set complement and set
intersection operations.

This definition describes a polyhedron dP ⊂ \ as a set of points generated
from a finite set of halfspaces by forming complements and intersections.
Set union, difference and symmetric difference can be reduced to intersection
and complement since

 (), A B A B A B A B∪ = ¬ ¬ ∩ ¬ − = ∩¬

As discussed in introduction, Walter Nef is developer of this theory. We
want to give here some definitions from the book of Nef [B03] to clarify this
definition. The open halfspaces defined more generally in n\ with Nef's
notations as follows:

0 { : () 0}
{ : () 0}
{ : () 0}

n

n

n

F x f x
F x f x
F x f x

+

−

= ∈ =

= ∈ >

= ∈ <

\
\
\

Here f(x) denoted a linear function. Corresponded closed halfspaces defined
as follows.

0

0

() { : () 0}
() { : () 0}

n

n

cl F F F F x f x
cl F F F F x f x

+ + −

− − +

= ∪ = ¬ = ∈ ≥

= ∪ = ¬ = ∈ ≤

\
\

 60

Nef says also in this book, a polyhedra nP ⊆ \ can be described as a function

1 2 3 4() ()P F F F F+ − − += ∩ ∪ ∩¬ with the arguments 1 2 3 4, , , .F F F F+ − − + Following
comments is also summarized from this book:

• Every open halfspaces are polyhedra such as ,F F+ − .
• Since ()cl F F+ −= ¬ , closed halfspaces are polyhedra.
• Since 0 () () ()F F F cl F cl F+ − + −= ¬ ∪ = ∩ , 0F is also a polyhedra..
• Since F F+ −∩ =∅ , ∅ is also a polyhedra.
• Since ()n = ¬ ∅\ , n\ is also polyhedra.

A related example with the definitions explained above as follows in this
book:

A polyhedra can construct in 3\ illustrated in Fig 2.27. Here, the cube in figure (1) is
constructed with the intersection of six halfspaces. Figure (2) constructed with the union of
the cubes after some rotations. Union of more cubes simultaneously give us an object such as
Figure (3). And (4) constructed with the difference operation between the figure (2) and (3).

More details about this theory and related proofs can be found in this book
[B03].

For Boolean operations on two Nef-Polyhedra (where dimension d>1) CGAL
represent a polyhedron as a set of pyramids. The computation of the
complement and of the closure of a polyhedron, as well as the intersection of
two polyhedra reduced to the application of primitive operations on
pyramids or on set of pyramids. The union and the difference of two
polyhedra P1 and P2 described as follows [Cd10]:

1 2 1 2 1 2 1 2(), P P P P P P P P∪ = ¬ ¬ ∩¬ − = ∩¬

The definition of a pyramid and local pyramid as follows [Cd10]:

Fig. 2.27 Constructed polyhedrons.

 61

Definition: A set Q in d\ is called a cone if there exists a point dx∈\ such
that ()Q x Q x+= + −\ (with { : 0}λ λ+ = ∈ >\ \). The point x is then called apex
of Q. The set of all apices of Q denoted by N(Q). A set Q in dE is called
pyramid if Q is a polyhedron and a cone.

 Now let dP ⊆ \ be a polyhedron and dx∈\ . There is a neighborhood 0 ()U x
of x such that the pyramid : ((()))Q x P U x x+= + ∩ −\ is the same for all
neighbourhoods 0() ()U x U x⊆ . Q is called the local pyramid of P in x and
denoted .xP

A face of a Nef polyhedron is defined as an equivalence class of local
pyramids that are a characterization of the local space around a point. In
other words, a face s of P is a maximal non-empty subset of d\ such that all
of its points have the same local pyramid Q denoted sP . This definition of a
face partitions d\ into faces of different dimension. A face s is either a subset
of P, or disjoint from P [Cd01]. Following rules and operations about local
pyramids obtained from [P05]. Here int(), ext(), cl() and ¬ denotes the
interior, exterior, closure and complement operations respectively:

1 2 1 2 1 2 1 2
x

(1) , ()
(2) int() , ()
(3) () , ()

(4) () , (()) (), (int(P)) int()

x x

x d x

x x x x x x

x x x x x

x P x P x cl P P
x P P x ext P P
P P P P P P P P

P P cl P cl P P

∈ ⇔ ∈ ∈ ⇔ ≠∅

∈ ⇔ = ∈ ⇔ =∅

∩ = ∩ ∪ = ∪

¬ =¬ = =

\

 Following example about local pyramids obtained also from [P05].

Faces do not have to be connected. There are only two full dimensional d-
faces possible, one whose local pyramid is the space d\ itself and the other
with the empty set ∅ as a local pyramid. All lower-dimensional faces form
the boundary of the polyhedron i.e. here called 0-faces vertices and 1-faces
edges. In the case of polyhedra in space called 2-faces facets and the full-

We denote with S(P) the set of all faces of P. For a face S we introduce : ().s xP P x S= ∈

As an example we take a look at the closed (open) unit cubes in a orthogonal coordinate
system in 3\ . Both cubes have the same 28 faces ()S S P∈ , the difference being that all
faces (except the exterior) are subsets of the closed cube, while (except the interior) they
are disjoint to the open cube. The faces are:

Nr type of S PS N(PS) dim(S)
8 vertices closed (open) octants points 0
12 edges closed (open) quadrants lines 1
6 facets closed (open) halfspaces planes 2
1 interior 3\ 3\ 3

1 exterior ∅ 3\ 3

 62

dimensional d-faces volumes. Faces are relative open sets, e.g., an edge does
not contain its end-vertices [Cd01].

We illustrate the definitions with an example in the plane [Cd01]. Given the
closed halfspaces

1 2 3 4 5: 0, : 0, : 3, : 1, : 2, h y h x y h x y h x y h x y≥ − ≥ + ≤ − ≥ + ≤

and we define our polyhedron

1 2 1 2 3 4 5: () ()P P P h h h h h= − = ∩ ∩ − ∩ .

In Fig.2.28 illustrated P1 and P2. Small arrows show the positive sides of
halfspaces. The shaded region, bold edges and black nodes part of the
polyhedrons.

Here P1 has 8 faces in all, 3 vertices (0-faces), 3 edges (1-faces) and 2 full-
dimensional faces. P2 has 5 faces , only one vertices, 2 edges and also 2 full-
dimensional faces.

Fig. 2.28 Planar examples of Nef-Polyhedron P1 and P2.

Fig. 2.29 Local Pyramids of P1 and P2.

 63

Faces and their local pyramids illustrated in Fig. 2.29. Small circles show
local pyramids and the numbers on the top-left of circles shows dimensions
of faces.

In Fig.2.30 (left side) illustrated polyhedron 1 2 1 2P P P P P= − = ∩¬ after
difference operation. The shaded region, bold edges and black nodes are part
of the polyhedron, thin edges and white nodes are not. The sketches of the
local pyramids of P are on the right side of figure. The local pyramids are
indicated as shaded in the relative neighbourhood in a small disc.

Polyhedron P has a partially open and partially closed boundary, i.e., vertex

4 5 6, ,v v v and edges 4 5,e e are not part of P. The local pyramids for the faces are
1fP =∅ and 2 2fP = \ . Examples for the local pyramids of edges are the closed

halfspace 2h for the edge 1e , 1
2

eP h= , and the open halfspace that is the 4h¬
for the edge 5e , 5 { (,) | 1 }eP x y x y= − < . The edge 3e consist actually of two
disconnected parts, both with the same local pyramid 3

1
eP h= . In data

structure, two connected components of the edge 3e will represent separately
[Cd01].

The local pyramids of each
vertex are represented by
conceptually intersecting the
local neighborhood with a
small ε -sphere. This
intersection forms a planar
map on the sphere (see the
Fig.2.31), which together
with the set-selection mark
for each item (i.e. vertices,

Fig. 2.30 The Nef Polyhedron P and sketches of local pyramids.

Fig. 2.31 Representation of vertices as Local pyramids.

 64

edges, loops and faces) forms a 2D Nef polyhedron embedded in the sphere
[Cd01]. See Chapter 13 in [Cd01] for further details. This is another part of
library named CGAL::Nef_polyhedron_S2 which out of our goals.

CGAL::Nef_polyhedron_3 evaluates a CSG-tree with halfspaces as
primitives and convert it into a B-rep representation. In fact, it works with
two data structures; one that represents the local neighborhoods of vertices,
which is in itself already a complete description and a data structure that
connects these neighborhoods up to a global data structure with edges,
facets, and volumes. CGAL::Nef_polyhedron_3 has a complex data
structure to store Nef polyhedrons. Having sphere maps for all vertices of a
polyhedron is a sufficient but not easily accessible representation of the
polyhedron. CGAL
enrich the data
structure with
more explicit
representations of
all the faces and
incidences between
them [Cd01]. More
examples about
using this complex
data structure can
be found in CGAL
documentation,
which is not really
used in our
implementation.
But we want to
give an term and
interface overview, since it is a relevant part to achieve Nef Polyhedron
structurally. This data structure and defined terms illustrated in Fig.2.32.
This data structure represents the connected components of a face
individually and explanations of the terms defined as follows [Cd01]:

edges: Here stored two oppositely oriented edges for each edge and have a pointer from one
oriented edge to its opposite edge. Such an oriented edge can be identified with an svertex in
a sphere map; it remains to link one svertex with the corresponding opposite svertex in the
other sphere map.

edge uses: An edge can have many incident facets (non-manifold situation). Therefore here
introduced two oppositely oriented edge-uses for each incident facet; one for each orientation
of the facet. An edge-use points to its corresponding oriented edge and to its oriented facet.
An edge-use can identify with an oriented sedge in the sphere map, or, in the special case
also with an sloop. Without mentioning it explicitly in the remainder, all references to sedge
can also refer to sloop.

Fig. 2.32 Representation of Nef Polyhedron data

structure.

 65

facets: Here stored oriented facets as boundary cycles of oriented edge-uses. Facets have a
distinguished outer boundary cycle and several (or maybe none) inner boundary cycles
representing holes in the facet. Boundary cycles are linked in one direction. Other traversal
direction is accessible when we switch to the oppositely oriented facet, i.e., by using the
opposite edge-use.

shells: The volume boundary decomposes into different connected components, the shells.
A shell consists of a connected set of facets, edges, and vertices incident to this volume.
Facets around an edge form a radial order that is captured in the radial order of sedges
around an svertex in the sphere map. Using this information, we can trace a shell from one
entry element with a graph search.

volumes: A volume is defined by a set of shells, one outer shell containing the volume and
several (or maybe none) inner shells separating voids which are excluded from the volume.

CGAL offer a rich interface to investigate these data structures, their
different elements and their connectivity. With this complex provided also
affine (rigid) transformations and a point location query operation.
Nef_polyhedron_3 have a custom file format (NEF3) for storing and
reading Nef polyhedra from files. Note that, this file format not documented
now. They offer a simple OpenGL-based visualizer for debugging and
illustrations [Cd01]. These techniques will be explained in implementation
chapter with more details.

In addition, we call a Nef polyhedron bounded if its boundary finite, and
unbounded otherwise. In order to handle unbounded Nef polyhedra
conceptually in the same way as which handle bounded Nef polyhedra,
CGAL use a special technique
(Infimaximal Frames) that
discussed in [Cp11] with all
details. This technique intersect
polyhedra with a bounding
cubical volume of size 3[,]R R− ,
where R is a symbolical
unspecified value, which is finite
but larger than all coordinate
values that may occur in the
bounded part of the polyhedron.
As a result, each Nef polyhedron
becomes bounded. The boundary
of the bounding volume called the
infimaximal box. We clip lines
and rays at the infimaximal box.
The intersection points with the
infimaximal box are called non-
standard points, which are points Fig. 2.33 Infimaximal Box and non-

standart points.

 66

whose coordinates are -R or R in at least one dimension, and linear
functions f(R) for the other dimensions. Such extended points (and developed
from there also extended segments etc) are provided in CGAL with extended
kernels, namely CGAL::Extended_cartesian and CGAL::Extended_
homogeneous. They are regular CGAL kernels with a polynomial type as
coordinate number type. Fig. 2.33 shows a complicated Nef polyhedron
consisting of diverse faces and low dimensional features. All vertices are
embedded via extended points. All points on the square boundary
(infimaximal box) are non-standard points [Cp11, Cd01]. As long as an
extended kernel is used, the full functionality provided by the
Nef_polyhedron_3 class is available. If a kernel that does not use
polynomials to represent coordinates is used, it is not possible to create or
load unbounded Nef polyhedra, but all other operations work as expected
[Cd01].

Now we want to explain programmer interface of nef polyhedra with small
examples in practically use. CGAL::Nef_polyhedron_3<Traits>
formally defined as follows:

template < class Nef_polyhedronTraits_3,
 class Nef_polyhedronItems_3 = CGAL::SNC_items,
 class Nef_polyhedronMarks = bool >

class Nef_polyhedron_3;

The first parameter requires one of the following exact kernels:

• Homogeneous, Simple_homogeneous, Extended_homogeneous_3

parameterized with Gmpz, leda_integer or any other number type
modelling .

• Cartesian, Simple_cartesian, Extended_cartesian_3

parameterized with Gmpq, leda_rational, Quotient<Gmpz> or any
other number type modelling .

The second and the third arguments are for future considerations. Neither
Nef_polyhedronItems_3 nor Nef_polyhedronMarks is specified, yet.
Only default types should be used at present for these two template
parameters. Out of them, there are some limitations kernel representations.
These limitations and related exceptions are also discussed with all details
in sections 3.3.2.1 and 3.3.2.2 in implementation chapter.

 67

Nef_polyhedron_3 has three kinds of constructor. The first one, creates a
Nef polyhedron and initializes it to the empty set if space == EMPTY and
to the whole space if space == COMPLETE, defined as follows:

 Nef_polyhedron_3<Traits> N(Content space = EMPTY);

The small example shows this constructor with necessary kernel
representation. The example creates two Nef polyhedra - N0 is the empty
set, while N1 represents the full space, i.e., the set of all points in the 3-
dimensional space:

#include <CGAL/Gmpz.h>
#include <CGAL/Homogeneous.h>
#include <CGAL/Nef_polyhedron_3.h>

typedef CGAL::Homogeneous<CGAL::Gmpz> Kernel;
typedef CGAL::Nef_polyhedron_3<Kernel> Nef_polyhedron;

void main() {
 Nef_polyhedron N0(Nef_polyhedron::EMPTY);
 Nef_polyhedron N1(Nef_polyhedron::COMPLETE);
}

The second constructor allows only extended kernel representations. This
one creates a Nef polyhedron containing the halfspace left of plane p
including p if b==INCLUDED , excluding p if b==EXCLUDED, defined as
follows:

 Nef_polyhedron_3<Traits> N(Plane_3 p, Boundary b = INCLUDED);

See the following example. This example shows the various constructors. We
can create the empty set, which is also the default constructor, and the full
space, i.e. all points of 3\ belongs to the polyhedron. We can create a
halfspace defined by a plane bounding it. Note that, extended kernels used
here. The halfspace constructor has a second parameter that specifies
whether the defining plane belongs to the point set
(Nef_polyhedron::INCLUDED) or not (Nef_polyhedron::EXCLUDED).
The default value is Nef_polyhedron:: INCLUDED.

#include <CGAL/Gmpz.h>
#include <CGAL/Extended_homogeneous.h>
#include <CGAL/Nef_polyhedron_3.h>

typedef CGAL::Extended_homogeneous<CGAL::Gmpz> Kernel;
typedef CGAL::Nef_polyhedron_3<Kernel> Nef_polyhedron;
typedef Nef_polyhedron::Plane_3 Plane_3;

void main() {

 68

 Nef_polyhedron N0;
 Nef_polyhedron N1(Nef_polyhedron::EMPTY);
 Nef_polyhedron N2(Nef_polyhedron::COMPLETE);

 Nef_polyhedron N3(Plane_3(1, 2, 5,-1));
 Nef_polyhedron N4(Plane_3(1, 2, 5,-1), Nef_polyhedron::INCLUDED);
 Nef_polyhedron N5(Plane_3(1, 2, 5,-1), Nef_polyhedron::EXCLUDED);

}

The third and last constructor creates a Nef polyhedron, which represents
the same point set as the polyhedral surface P does, defined as follows:

 Nef_polyhedron_3<Traits> N(Polyhedron& P);

Nef_polyhedron_3 provides an interface for the conversion between
polyhedral surfaces represented with the CGAL::Polyhedron_3 class and
Nef_polyhedron_3. The Polyhedron_3 class can represent also
orientable 2-manifold objects with boundaries. The surfaces with boundaries
from the conversion to Nef_polyhedron_3 excluded, since they have no
properly defined volume. In other words, they must be closed ones. This is a
precondition. In our implementation are used this constructor.

Defined handles and iterators to visit stored objects in data structure,
summarized in following table. Out of them, some circulators are also
defined for user convenience. For more details [Cd01]. Note that, namespace
prefix Nef_polyhedron_3<Traits>:: extracted in first table for short
table contents.

Additionaly, following object types defined for nef polyhedron:

Handles Iterators Access
Vertex_const_handle Vertex_const_iterator vertices_begin()…end()
Halfedge_const_handle Halfedge_const_iterator halfedges_begin()…end()
Halffacet_const_handle Halffacet_const_iterator halffacets_begin()…end()
Volume_const_handle Volume_const_iterator volumes_begin()…end()
SVertex_const_handle SVertex_const_iterator
SHalfedge_const_handle SHalfedge_const_iterator
SHalfloop_const_handle SHalfloop_const_iterator
SFace_const_handle SFace_const_iterator

Nef_polyhedron_3<Traits>::Point_3 location of vertices.
Nef_polyhedron_3<Traits>::Segment_3 segment represented by a halfedge.
Nef_polyhedron_3<Traits>::Vector_3 direction of a halfedge.
Nef_polyhedron_3<Traits>::Plane_3 plane of a halffacet lies in.
Nef_polyhedron_3<Traits>::Nef_polyhedron_S2 a sphere map.
Nef_polyhedron_3<Traits>::Polyhedron A polyhedral surface.

 69

Following example show us using some of these handles in a point query, it
is also interesting example to using CGAL::assign function. The
locate(Point_3 p) function locates the point p in the Nef polyhedron and
returns the item the point belongs to. The locate function returns an
instance of Object_handle, which is a polymorphic handle type
representing any handle type. For further usage of the result, the
Object_handle has to be casted to the concrete handle type. The
CGAL::assign function performs such a cast. It returns a boolean that
reports the success or the failure of of the cast. Looking at the possible
return values of the locate function, the Object_handle can represent a
Vertex_const_handle, a Halfedge_const_handle, a Halffacet_
handle, or a Volume_const_handle. One of the four casts will succeed.

// file: examples/Nef_3/point_location.C

#include <CGAL/Gmpz.h>
#include <CGAL/Homogeneous.h>
#include <CGAL/Nef_polyhedron_3.h>
#include <CGAL/IO/Nef_polyhedron_iostream_3.h>

typedef CGAL::Homogeneous<CGAL::Gmpz> Kernel;
typedef CGAL::Nef_polyhedron_3<Kernel> Nef_polyhedron_3;
typedef Nef_polyhedron_3::Vertex_const_handle Vertex_const_handle;
typedef Nef_polyhedron_3::Halfedge_const_handle Halfedge_const_handle;
typedef Nef_polyhedron_3::Halffacet_const_handle Halffacet_const_handle;
typedef Nef_polyhedron_3::Volume_const_handle Volume_const_handle;
typedef Nef_polyhedron_3::Object_handle Object_handle;

typedef Kernel::Point_3 Point_3;

int main() {
 Nef_polyhedron_3 N;
 std::cin >> N;

 Vertex_const_handle v;
 Halfedge_const_handle e;
 Halffacet_const_handle f;
 Volume_const_handle c;

 Object_handle o = N.locate(Point_3(0,0,0));

 if(CGAL::assign(v,o))
 std::cout << "Locating vertex" << std::endl;
 else if(CGAL::assign(e,o))
 std::cout << "Locating edge" << std::endl;
 else if(CGAL::assign(f,o))
 std::cout << "Locating facet" << std::endl;
 else if(CGAL::assign(c,o))
 std::cout << "Locating volume" << std::endl;
 //other cases can not occur

 return 0;
}

 70

As explained before, Nef polyhedra are closed under Boolean set operations.
The class Nef_polyhedron_3 provides functions and operators for the
most common ones: complement, union, difference, intersection and
symmetric difference. Additionally, the operators *=, -=, *= and ^= are
defined. Nef_polyhedron_3 also provides the topological operations
interior, closure, and boundary. With interior() one deselects all
boundary items, with boundary() one deselects all volumes, and with
closure() one selects all boundary items.

Regularized set operations (discussed in Chapter 2.8.1.5) are important since
they simplify the class of solids to exclude lower dimensional features and
the boundary belongs to the point set. These properties are considered to
reflect the nature of physical solids more closely. Regularized polyhedral
sets are a subclass of Nef polyhedra. CGAL provide the regularization
operation as a shortcut for the consecutive execution of the interior and the
closure operations [Cd01]. Unary and binary set operations with overloaded
operators summarized following table:

Method Defined Operators Return
N.interior() the interior of N.
N.boundary() the boundary of N.
N.closure() the closure of N.
N.regularization() the closure of the interior, of N.
N.complement() !N the complement of N.
N.intersection(N1) N*N1 N*=N1 the intersection of N and N1.
N.join(N1) N+N1 N+=N1 the union of N and N1.
N.difference(N1) N-N1 N-=N1 the difference between N and N1.
N.symmetric_difference(N1) N^N1 N^=N1 the sym. difference of N and N1.

Additionaly some point set predicates defined which returns a Boolean
value listed following table:

Predicate Return true if
N.is_empty() N is the empty point set.
N.is_space() N is the complete 3D space.
N == N1 N and N1 comprise the same point sets.
N != N1 N and N1 comprise different point sets.
N < N1 N is a proper subset of N1.
N > N1 N is a proper superset of N1.
N <= N1 N is a subset of N1.
N >= N1 N is a superset of N1.

Following well described CGAL example can give an idea how can be used
this operators with Nef structures:

// file: examples/Nef_3/point_set_operations.C

#include <CGAL/Gmpz.h>

 71

#include <CGAL/Extended_homogeneous.h>
#include <CGAL/Nef_polyhedron_3.h>

typedef CGAL::Extended_homogeneous<CGAL::Gmpz> Kernel;
typedef CGAL::Nef_polyhedron_3<Kernel> Nef_polyhedron;
typedef Nef_polyhedron::Plane_3 Plane_3;

int main() {
 Nef_polyhedron N1(Plane_3(1, 0, 0,-1));
 Nef_polyhedron N2(Plane_3(-1, 0, 0,-1));
 Nef_polyhedron N3(Plane_3(0, 1, 0,-1));
 Nef_polyhedron N4(Plane_3(0,-1, 0,-1));
 Nef_polyhedron N5(Plane_3(0, 0, 1,-1));
 Nef_polyhedron N6(Plane_3(0, 0,-1,-1));

 Nef_polyhedron I1(!N1 + !N2); // open slice in yz-plane
 Nef_polyhedron I2(N3 - !N4); // closed slice in xz-plane
 Nef_polyhedron I3(N5 ^ N6); // open slice in yz-plane
 Nef_polyhedron Cube1(I2 * !I1);
 Cube1 *= !I3;
 Nef_polyhedron Cube2 = N1 * N2 * N3 * N4 * N5 * N6;

 CGAL_assertion(Cube1 == Cube2); // both are closed cube
 CGAL_assertion(Cube1 == Cube1.closure());
 CGAL_assertion(Cube1 == Cube1.regularization());
 CGAL_assertion((N1 - N1.boundary()) == N1.interior());
 CGAL_assertion(I1.closure() == I1.complement().interior().complement());
 CGAL_assertion(I1.regularization() == I1.interior().closure());

}

Nef Polyhedra may be a part of this algorithm library which has larger
dependency with other parts. It’s impossible to explain every detail here.
This was only a minimum overview that respect to our goals. All references
about the theory and implementation of different parts of Nef-Polyhedra
classified and listed in a separate paper [Cp10]. There is more then 20
references here classified under parts of Definition and theory, Edge based
data structures for 2-D Nef, Infimaximal Frames, 2D-Nef Polyhedra and 3D
Nef Polyhedra. More details about definitions and implementation of the
parts of nef polyhedra are discussed in the documents which referenced in
[Cp10].

 72

Chapter 3

Implementation

I believe that the moment is near
 when by a procedure of active paranoiac-thought,

 it will be possible to systematize confusion
and contribute to the total discrediting of the world of reality.

Salvador Dali

 73

Chapter 3

3. Implementation
In order to easily apply the Boolean set operations on WSS files, a
programmer interface is implemented between WSS and CGAL. The first
part of this chapter aims at giving an overview about this interface and used
file formats. The second part of this chapter, namely 'implementation
details', explains the details of different implementation steps. In the third
and the last part gives some examples of the usage of the programmer
interface. The application of the developed interface is explained with
different examples.

3.1 Overview

The motivation and reasons behind designing this programmer interface
have already been explained in the first chapter. The programmer interface
must support some operations which are necessary for using the CGAL in
the processing of WSS data files. These operations are summarized as
follows:

• Extracting and storing surfaces of wafer components which are

contained in WSS data files.
• Building CGAL objects (Polyhedron_3 / Nef_Polyhedron_3) from the

currently and previously extracted surfaces on which Boolean set
operations are applied.

• Handling the data coming from the following sources in a cost-effective
and flexible manner:

o Extracted surfaces
o Created objects
o Result of operations

• Debugging the data retrieved any phase of a session.
• Visualizing the objects, results, and extractions.
• Producing outputs from the result of operations and making these

available in different file formats for other purposes.
• Enabling described modules should be able to work with different kernel

representations in CGAL.

A flexible modular structure is designed and described for satisfying the
above mentioned requirements. In order to response the demands of
different kinds of applications; the modules are designed to operate

 74

independently when necessary. They also have a well-organized data flow
between internal processes. The modular structure consists of five modules:
Extractor, Creator, Outer, Checker and Displayer. Before moving on to the
tasks of each module, it would be useful to give an overall idea about the
interaction between the modules. Fig.3.1 illustrates the work-flow of
modules in a typical session.

As illustrated above, the modules can share a data pool without conflicts.
Result of operations also can be reused in new operations. It's also possible
to conduct the necessary operations during different sessions. For instance,
in one session, we can use the Extractor to extract and store the surfaces
externally; and, in another session, we can use the Creator to process these
externally stored files. Creator can build objects from internal
representations as well as from external files. It is also possible to include
the Displayer and the Checker in a session when debugging and displaying
are necessary. While STL containers are used for internal data storage; the
different file formats are used for storing the date externally.

It is possible to have multiple instances of the Extractor. This possibility
allows processing different WSS data files in the same session. The option of
multiple instances is available also for the other modules. However, under
normal circumstances, one session needs only one instance of the other
modules. The following part shortly introduces the fives and defines their
basic functions:

Fig. 3.1 Work-flow of described modules

 75

Extractor: The Extractor reads and reorders the surface information
received from the WSS data files with the help of WSS I/O Interface. Some
WSS data files contain multiple segments. The user can extract the surface
of the whole wafer component as well as the surface of a selected segment as
in the case WSS data files with multiple segments. STL containers are used
for storing the surface information which constitutes of points and facets.
Extractor can store these STL containers directly as an OFF file. Before
storing this information, the Extractor does the necessary reordering
operations for the later steps, such as in the case of correcting the
orientation of facets. This correction is needed for creating objects
successfully with the Creator.

Creator: This module offers necessary object creations. The Creator creates
Polyhedron_3 and Nef_polyhedron_3 using directly the data coming
from different sources. Creator can build these polyhedral structures using
either external files or points and facets. In the case of using points and
facets, the Creator uses the incremental builder mechanism. The
incremental builder mechanism offers a better debug possibility during the
creation. The Creator also makes the necessary conversions from
Nef_polyhedron_3 into Polyhedron_3, and vice versa. Such conversions
are necessary for file outputs.

Displayer: This module visualizes the created objects with the help of
CGAL's support library. The Displayer also allows displaying points and
facets before their creation. This option makes visual debugging possible.
This module can display the externally stored OFF files.

Checker: This module checks the validity of the created objects. It also
provides information about the internal data structure of objects. The
information is revealed in any standard output stream such as std::cout.

Outer: Main task of this module is giving outputs of the created objects in
different file formats. The Outer has also an additional function for writing
the Polyhedron_3 objects in native kernel representations. This function is
useful especially for debugging.

3.2 File Formats

In our implementation, we use different file formats for input-output
operations and the storage of the operation results of some internal
processes. Before getting into the details of our implementation, it is
necessary to discuss these file formats and their properties.

 76

The WSS data files are organized in sections. Some of these sections
recursively contain subsections. A wafer component can contain different
parts with diverse properties. These parts are referred to as Segments.
Geometric information about surfaces is stored in Segments and Points
sections. The Points section stores a global list of points where each point is
defined as a coordinate triple. The following example which is truncated
from a WSS file shows a WSS file header and a shortened points section.

VERSION "1.4"
NAME RHVGMLWss
DIMENSION 3
POINTS
{
 4.000000000000 1.301042689898 0.000000000000
 ………………………………………………………
 …………………………………
 1.700270588079 2.673623061747 1.000000000000
 0.940902075238 3.119240405541 2.502510123488
}
………………………

A segment is a spatially boundary of a wafer construction component. A
WSS file contains at least one segment. The maximum number of segments
is not limited. The WSS data files store, in segment sections, segment-
relevant-information such as grid elements, material properties, etc. The
following example which is truncated from the same WSS data file shows
the structure of a segment which contains such information. In the section
GRID gr_1, there are integer sequences belonging to the first segment of
this segments section. These numbers refer to their respective points which
are listed in the above points section.

SEGMENTS
{
 Mat1
 {
 GRID gr_1
 {
 27 38 36 39
 46 57 36 49
 …………………………
 57 46 37 47
 1 42 0 47
 }
 ATTRIBUTES
 {
 MaterialType
 {
 " Si "
…………………………

 77

This model for storing surface data prevents the storage of redundant
coordinate information. Due to this significant advantage, most file formats
use this model. For instance, a triangle is stored as an integer for each of
its vertices (instead of three double for each coordinate triple).

The solid object in the Figure 3.2 represents a triangulated surface
boundary of a wafer component. The highlighted surface contains six
vertices and four facets. Some vertices are shared by different facets. As a
result, in the point list, six coordinate triples for six vertices are stored. And,
in the facets list, facet vertices are stored as integers which refer to their
respective points in the point list.

A similar model is used by Object File Format (OFF). The default file format
supported in CGAL for output as well as for input is the OFF, with file
extension .off. The visualization tool Geomview can browse OFF files
directly. Geomview is used also by the support library of CGAL for
visualizing kernel objects as well as 3D-Polyhedral surfaces. Therefore, the
OFF is the main file format which is used for inputs and outputs in our
implementation.

An OFF file is quite simple to explain. The following example shows a
simple OFF file which describes a cube with eight vertices and six facets.
The first two lines of an OFF file are reserved for the header. The first line
contains the string "OFF". The second line contains the number of faces and
vertices. The lines starting with '#' are interpreted as comments. The header
is followed by a list of coordinate triples, each coordinate triple representing
one point and occupying one line in the list. The point list is followed by a
facet list. In the facet list, each facet is described with one line. The first
number of the lines refers to the number of the facet vertices. In our

Fig 3.2. Example for storing the points and facets of a triangulated surface of

The 3D solid objects.

 78

example, each line starts with the number '4'. This number can of course
change by different facets depending on the number of their vertices; and, as
a result, different lines can start with different numbers. The following
numbers in a line refer to the points in the points list.

OFF
8 6 0
points
 -1 -1 1
 -1 1 1
 1 1 1
 1 -1 1
 -1 -1 -1
 -1 1 -1
 1 1 -1
 1 -1 -1
facets
 4 3 2 1 0
 4 0 1 5 4
 4 6 5 1 2
 4 3 7 6 2
 4 4 7 3 0
 4 4 5 6 7

The additional file formats supported for outputs in our implementation are
follows: OpenInventor (.iv); VRML 1.0 / 2.0 (.wrl); and Wavefront Advanced
Visualizer object format (.obj). All these file formats have in common that
they represent a surface as a set of facets. Each facet is a list of indices
pointing into a set of vertices. Vertices are represented as coordinate triples.
The chapter four gives some examples of outputs in these file formats.
Further details on these well-known file formats are also available on the
World Wide Web.

Another file format which is used in our implementation is the NEF3. This
format can be used via input-output operators for storing and reading the
information about 3D-Nef structures. This native file format has not yet
been documented. Our implementation uses this format for Nef-
Polyhedrons. The Outer can store Nef-Polyhedrons as an NEF3 file which
can be used with the Creator for building Nef-Polyhedrons.

 79

3.3 Implementation Details

This section explains the above introduced five modules in detail. These
modules are used for applying Boolean set operations on received surfaces
from WSS data files. The modules are presented as C++ header files which
are named after their respective modules: extractor.h, creator.h,
displayer.h, checker.h, outer.h. In addition, a further header file
called globals.h is created for the necessary global variables, type and
include definitions.

In our implementation, we use different handles and methods belonging to
different namespaces such as CGAL, WSS, and C++ standard namespaces.
In order to avoid any confusion, we put the namespaces as prefixes in front
of the method or handle names: NAMESPACE::handle_name or
NAMESPACE::method_name().

This section consists of six sub-
sections. The first five sub-
sections give detailed
information about our five
modules. Each of these sub-
sections start with a diagram of
the related module. These
diagrams visualize the following
information: Input and Output
Types; public and private
methods; internal calls; and
templates used by the module. As seen in the small diagram, public methods
and private methods are represented with grey and white boxes
respectively. Internal calls are illustrated with a tree-like structure. All
allowed types of inputs and outputs are shown on the right side of the
diagrams. In the last and sixth subsection, we discuss the header file
globals.h.

3.3.1 Extractor

This module offers access to the I/O interface of WSS. With the I/O
interface of WSS, it is possible to extract the triangulated surface
information of wafer components, which are stored in WSS data files.

As discussed in chapter CGAL, 3D-Polyhedral surfaces can represent only 2-
manifold surfaces. Therefore, we are only interested in extracting the

 80

triangulated surface information about wafer components from WSS data
files. As earlier mentioned, the WSS data files contain some information
which is irrelevant for us such as the tetrahedrons which constitute the
volume of wafer components and some material properties.

The Extractor uses the functions of WSS library to read the points and
facets belonging to the surfaces of wafer components. Handles and methods
are described by WSS library to iterate on the surfaces. The following
header files are included from the WSS library for accessing and receiving
surface information:

#include "wssreader.hh"
#include "waf_config.hh"
#include "wafertools.hh"

The constructor function of the Extractor activates the requested file for
later extractions with the help of the reader of WSS. In other words, the
constructor function instantiates a WSS::Wafer_h handle which refers to
the related WSS data file. This instantiation has a standard way of
accessing to WSS data files:

 Config_h cfg(new Config()); // Setting up reader
 Reader_h reader(new WssReader(cfg, fname)); // Loading wafer

 Wafer_h wafer = newWafer(reader, cfg); // Wafer is instanced

 Extractor(file)

lessXYZ<Point>()

getSurface()

findIndice(Point)

sortPoints()

WSS

buildOFF(file) OFF

intgetNOS()

extract()

extract(segNum)

STL

STL

Fig 3.3. The module Extractor

 81

The WSS::Config_h handle sets up the reader. The WSS::Reader_h
handle loads the wafer from requested WSS data file. Finally, the related
wafer is instantiated with the help of the WSS::Wafer_h. handle. When the
wafer is instantiated, we are ready to access the information, which is
stored in the WSS files. An Extractor object can be instantiated from any
scope of a session easily:

Extractor WSS1("file1.wss"), WSS2("file2.WSS);

Some of the WSS data files contain multiple segments. If you use the WSS
I/O interface, it makes it possible to extract not only the complete surface of
a wafer component, but also the surface of each segment. The Extractor
describes a method, namely Extractor::getNOS(), which is used for
getting the number of segments contained in the requested WSS data file. If
number '1' is returned, this means WSS data file contains only one single
segment. Please note that, the segments indices start with 0. For instance,
if the method Extractor::getNOS() returns 3, then the indices of
segments change between 0 and 2. These indices might be used later for
referring to the segment whose surface is to be extracted.

The public method Extractor::extract() is used for extracting the
complete surface of a wafer component. This method is overloaded with the
method Extractor::extract(int segnum) which is used for extracting
the surface of an certain segment. As discussed above, the argument
segnum should contain the indices of the related segment. Both of these
methods use a special WSS surface handle, namely WSS::Surface_hvh, for
accessing the desired surface information. These two methods store the
necessary surface handle WSS::Surface_hvh in the local object variable
surf. Then, they make a internal call to the private method
Extractor::getSurface(). After the execution of Extractor::
getSurface(), Extractor stores the points and facets of the received
surface in our STL containers. The WSS::Surface_hvh is instantiated over
the wafer instance in use as follows:

 // getting whole Wafer surface
 Surface_hvh surf = wafer ->getSurface();

 // getting segment surface
 Segment_h seg = wafer ->nextSegment(segNum);
 Surface_hvh surf = seg ->getSurface();

 82

As shown above, the method WSS::getSurface() enables accessing the
surface of whole wafer directly. In order to access the surface of a certain
segment, we need two steps: at the first step, we get the certain segment
with the method WSS::nextSegment(); and, at the second step, we
access the surface of this segment over the handle WSS::Segment_h with
the method WSS::getSurface().

The points and facets are received over the handle WSS::Surface_hvh ,
they are stored in standard vector containers which are a special type of STL
containers. In general, the STL containers have the following advantages:

• CGAL is a C++ library which rather suitable for using with the STL
containers. The data, which is stored in the STL containers can be
used in a flexible manner.

• The content of a STL container can be redefined very easily for future
needs.

• As linked-lists, the STL containers do not need pre-allocation.
Because of this reason, they can be used in a cost-efficient manner
with WSS data files with different memory space requirements.

The Vector containers, in particular, allow access to its elements also with
indices just as in the case of arrays. This possibility is not offered by
standard list containers. Our containers for storing points and facets are
defined as follows:

// Kernel representation of points
typedef CGAL::Cartesian<double> K1;

// The container definition for points
typedef std::vector<K1::Point_3> PointList;

// The container definition for facets
typedef std::vector<int> Face;
typedef std::vector<Face> FaceList;

// Instances
PointList points;
FaceList facets;

Coming back to a point mentioned earlier, the points and facets are received
with the help of the WSS::Surface_hvh. After having a surface handle by
surf, we can iterate over this surface handle with WSS::
Surface_hv::iterator. This iteration gives us the points and facets,
which belongs to this surface.

 83

Surface extraction has two internal steps: getting points and getting facets.
For getting the points, our method Extractor::getSurface()uses the
surface handle surf. For reading the points, Extractor::
getSurface()accesses the triangles on the surface with the above
mentioned iterator. The following code part shows the step getting points:

for (hit = surf->begin(); hit != surf->end(); hit++) {

 aFace = *hit; actPoi = 0;
 for (i=0; i<3; i++) {

 Wp = *(aFace -> nextPoint(actPoi));
 Cp = K1::Point_3(Wp.x,Wp.y,Wp.z);

 if (std::find(points.begin(),points.end(),Cp) == points.end())
 { points.push_back(Cp); }
 }
}

Here, hit is defined as WSS::Surface_hv::iterator. In the outer loop,
we iterate on the triangles of the surface with the help of hit. The content
of a triangle is stored temporarily in the scope variable aFace which is
defined as WSS::Surface_h. In the inner loop, we read each point of a
triangle with the method WSS::nextpoint(), and store this point
temporarily in Wp. Wp is defined as WSS::Point which is the default point
type of the WSS library. In the next line, we convert this WSS point type
into a CGAL point type which uses the selected kernel representation. In
the last line of the inner loop, we use a standard algorithm of C++, namely
std::find(). The points on the surface are shared by different triangles.
With the help of std::find(), we store only those points which have
previously not been stored in the list points. Those points, which are
already existing in the list of points, are skipped.

After storing those points, we sort the point list. The sort operation is
necessary for finding the indices of a point efficiently in the next step
(reading facets). For sorting the point list, we describe a binary function
object. The binary function object uses the predicate
CGAL::lexicographically_xyz_smaller(p,q) for point comparisons.
The function object returns to true if only p is lexicographically smaller
than q with respect to xyz order.

template<class T>
struct lessXYZ:public binary_function<T,T,bool> {
 bool operator() (const T& t1, const T& t2) const {
 return (CGAL::lexicographically_xyz_smaller(t1,t2));
 }

 84

};

The private method Extractor::SortPoints() calls this function object
from std::sort(), and sorts points as shown below:

 std::sort(points.begin(),points.end(), lessXYZ<K1::Point_3>());

The second step, namely getting facets, is implemented into the method
Extractor::getSurface(). In this step, the triangles of the surface are
stored in the list facets. For realizing this step, we iterate a second time
on the surface handle surf. This iteration uses a similar outer loop, which
is also used in the reading points step. There are some differences between
the inner loops of the first and second step. Here, it is necessary to find the
indices of the received points, which are contained in the sorted list. Since
each triangle consists of three points, three integer indices are stored for
each triangle. These indices refer to list points. After these three indices
are stored in a temporal container, this container is added to our list
facets. As shown in the code below, after the receiving the point Cp, we
call the method Extractor::findIndice(). Found indices are stored in
the temporal container tri.

 for (i=0; i<3; i++) {

 Wp = *(aFace-> nextPoint(actPoi));
 Cp = K1::Point_3(Wp.x,Wp.y,Wp.z);

 j = FindIndice(Cp);
 tri.push_back(j);
 }

For finding the indices efficiently, we define a finding routine, named
Extractor::FindIndice(K1::Point_3 &Cp). This function returns
back to the point orders from the list points. The described algorithm is a
classical binary-search algorithm which searches a sorted list by repeatedly
dividing the search interval in half. The required number of comparisons for
finding the indices of an element in a point list with n elements is, in worst-
case, (log)O n . For example, the algorithm needs maximum 15 point-to-point
comparisons to find the indices of a point in a list with 16.384 points. For
this comparison, the same predicate CGAL::lexicographically_
xyz_smaller (p,q) is used.

 85

WSS library defines more concepts for accessing points of the surface. For
instance, we can read these points with object WSS::Locater more easily.
In the previous version of our implementation, we read the points with
WSS::Locater. Some received received with the WSS::Locater do not
belong to the surface. These points cause problems in our later steps, for
instance, as creating polyhedrons. In order to eliminate these points, we
first need to identify them in our list, and then delete them. These points
can be identified only after having the facets read. After the deletion, the
order of the points is shifted in the list points. Since the indices in the list
facets refer to the points in the list points, it is necessary to update these
indices in the list facets accordingly. This way of implementation is a
successful one. However, since it has a rather complex workflow due to
elimination and re-indexing, the WSS::Locater is not used for reading
points in our current version. Therefore, we read the points and facets with
the help of the handle WSS::Surface_hvh.

At this point, it is necessary to mention that
we found out that the received triangles had
different orientations. While some triangles
have clockwise orientation, others have
counter-clockwise orientation. As discussed
earlier in the CGAL chapter, a
CGAL::Polyhedron_3 object uses half-edge
data structures for storing the surface
internally. As a precondition, every facet on
this structure needs to have the same
orientation. In addition, the construction of a
CGAL::Nef_ Polyhedron_3 is successful if all these facets are counter-
clockwise oriented. Therefore, it is necessary to make an orientation check
for each facet, and correct the orientation of the facets if necessary.

The above problem is solved in the step of getting facets, before storing the
triangles in list facets. The received triangles with clockwise orientation
are corrected as counter-clockwise. This check and correction is realized
using the method WSS::pointOrderOrientation(). This method returns
true for the facets with clockwise orientation. In this case, indices of the
triangles, which have been stored previously in the temporal container tri
need to be reversed. For reversing the indices, we use the standard STL
algorithm std::reverse(). After the correction, the facet is added to the
list facets:

 if (aFace->pointOrderOrientation())
 { reverse(tri.begin(),tri.end());}

 86

 facets.push_back(tri);

In our implementation, we have preferred to use points and facets lists
as globally. In some sessions, it is necessary to use multiple Extractor
instances. Such sessions requires considerable resources. Global containers
allow a more efficient use of the available resources. Because only one
surface extraction request is processed at a time, we do not need to store an
individual list for each Extractor instance. We have used global lists in all
our sessions in which we have experimented processing the WSS data files.
All instances of Extractor module have used the global containers without
any conflicts.

Using the method Extractor::buildOFF() is another way of minimizing
necessary resources. The public method Extractor::buildOFF()can give
an OFF file which is created from the contents of our STL containers. In
order enable this, we use standard output streams. These OFF files make
possible direct creations with the module Creator in later sessions, and this
without any extractions. The method Extractor::buildOFF() is also
useful for debugging. Some other debugging-methods are implemented in
other modules. For instance, the module Displayer can visualize the lists
points and facets. These additional methods are explained in the related
subsections about the modules.

In conclusion, after instantiation of an Extractor, the requested wafer is
instantiated, and the lists points and facets are cleared. After the
instantiation, we are ready to use Extractor::extract() or
Extractor::extract(segnum). After a request for one of these methods,
Extractor::getSurface() is called internally to extract the desired
surface into the lists points and facets. While the list points contains
sorted points, the list facets contains counter-clockwise oriented triangles.
Each new request causes new extractions or re-extractions from desired
surfaces into our lists points and facets. During the session, these lists
are continuously cleared and reused. Therefore, these lists contain only the
extracted surface information of the last request. The public method
Extractor::buildOFF() can directly write an OFF file from the current
content of lists points and facets. At this point, we are ready to use the
Creator for building the necessary polyhedral structures on which Boolean
set operations are applied.

 87

3.3.2 Creator

Our main object Creator offers several methods for creating CGAL
Polyhedral structures, which belong to the classes CGAL::Polyhedron_3
and CGAL::Nef_polyhedron_3.

Creator uses two main techniques for the creation: first, building via
incremental building mechanism with the data stored in STL containers;
and second, scanning the external files containing data from earlier
sessions. First method gives great debug possibilities during the creation.
Second method enables creations from OFF/NEF3 files.

Creator offers following public methods for creating polyhedrons:

Method Used data source

Fig 3.4. The module Creator.

 88

buildPOLY() STL Containers
OFFtoPOLY(char *fname); OFF file
convertPOLY(Nef_polyhedron& NP ,bool scaling=true) Nef_polyhedron_3

Corresponding public methods for creating Nef-Polyhedrons are following:

Method Used data source
buildNEF() STL Containers
OFFtoNEF(char *fname); OFF file
NEF3toNEF(char *fname); NEF3 file
convertNEF(Polyhedron& P, bool scaling=true) Polyhedron_3

Described public methods returns either CGAL::Polyhedron_3 or CGAL::
Nef_polyhedron_3. The user can define the kernel representations, which
are used by those objects.

Creator is also responsible for the Boolean set operations on
CGAL::Nef_polyhedron_3. Required operators are already described by
CGAL for applying Boolean set operations on created objects. These
operations have some additional requirements such as: coordinate
translations; kernel conversions; and object conversions for outputs. These
additional requirements are automatically handled by Creator, if it is
necessary. The details of these methods will be explained later in this
section. Fig.3.4 shows the internal structure of module Creator.

Before going into the details of the Creator, it is necessary to clarify some
questions such as: "Why we need some transformations or conversions?";
"Why we need different kernel representations?"; etc. Such as discussed in
previous chapters, Boolean set operations and 3D-Nef Polyhedron are newly
implemented in CGAL algorithm library and not really integrated into this
library. As a result, this new parts are requiring quite a number of
preconditions. Furthermore, some options promised for the future releases
of the CGAL are not supported at the moment. During the development of
Creator, we have consulted the CGAL team several times. Those
consultations have proved to be rather helpful in overcoming the above
mentioned difficulties.

3.3.2.1 Conversions

Two different classes are described in the algorithm library of CGAL, to
represent polyhedral structures in three dimensions:
CGAL::Polyhedron_3 and CGAL::Nef_Polyhedron_3.

These classes have some advantages and disadvantages. The
CGAL::Polyhedron_3 is relatively old and a well-integrated class of

 89

CGAL. This class has got more possibilities for inputs/outputs and different
constructors. But Boolean set Operations are not offered with this class.
Since these operations are offered only with the
CGAL::Nef_Polyhedron_3, we need this class for using the Boolean set
operations. But it is not possible to create a CGAL::Nef_Polyhedron_3
from points and facets. The CGAL:: Nef_polyhedron_3 has got mainly
two different constructors at the moment. One of the constructors is
intended for the surfaces with infinite boundaries, which requires an
extended kernel representation. The other constructor gives the possibility
to construct a CGAL::Nef_polyhedron_3 directly from a
CGAL::Polyhedron_3 object. In order to use this constructor we must
create before a CGAL:: Polyhedron_3. Therefore, we first create a
CGAL::Polyhedron_3, and then, using the second constructor, we convert
it into a CGAL::Nef_polyhedron_3.

Since we should use those two different classes for creations, some
conversions are necessary between CGAL::Polyhedron_3 and
CGAL::Nef_Polyhedron_3. After the creation of a Polyhedron, we must
convert it into a NEF-Polyhedron for applying Boolean Set Operations. After
these operations, we have some results objects, which are also Nef-
Polyhedrons. NEF-Polyhedron has a native topologic structure, which can
be stored only as a NEF3 native file format. Also here, we need to convert
these operation results into Polyhedrons for producing more useful outputs.
As a result, some conversions are necessary in both direction. These two
classes has got different native properties, which are affected necessary
conversions.

CGAL::Polyhedron_3 has following properties:

• It can represent only oriented 2-manifold surfaces.
• These surfaces can also have border edges, i.e. it is allowed to open

surfaces.
• The polygons, which constitute the surfaces need to be oriented in the

same direction (clockwise or counter-clockwise).

On the other side, CGAL::Nef_polyhedron_3 object has following
properties:

• This class closed under Boolean Set Operations with all generality. It
can model, non-manifold solids, unbounded solids, and objects
comprising parts of different dimensionality.

• The polygons, which constitute the surfaces need to be counter-
clockwise oriented, or else the CGAL::Nef_polyhedron_3 cannot

 90

correctly distinguish between the interior and the exterior of the solid
during the Boolean Set Operations.

As a result, these properties bring us following pre-conditions during
necessary conversions:

(1) The CGAL::Polyhedron_3 can also represent open surfaces, which
do not properly define a volume. This kind of CGAL::Polyhedron_3
objects are excluded from the conversion into CGAL::
Nef_polyhedron_3. Therefore, a CGAL::Polyhedron_3 object is
convertible into CGAL:: Nef_polyhedron_3, if it is closed.

(2) The results of the Boolean Set Operations can have also non-manifold
situations. This does not cause a problem because the
CGAL::Nef_polyhedron_3 can also model non-manifold solids.
Unfortunately, non-manifold surfaces are not offered with
CGAL::Polyhedron_3. Therefore, CGAL::Nef_polyhedron_3
object is convertible into a CGAL::Polyhedron_3 object, if it is 2-
manifold.

(3) The polygons, which constitute the surfaces need to be counter-
clockwise oriented. We already solved this orientation problem with
the Extractor.

In the necessary conversions in both directions, the methods of Creator
check above explained pre-conditions. In order to make these conversions,
the Creator offers two public methods:

1. Creator::convertNEF(Polyhedron& Px, bool scaling=true)

This method converts Px into a Nef-polyhedron. Before the conversion, this
method tests the condition (1) with the member function
CGAL::Polyhedron_3::is_closed(). This member function returns
true if Px is closed. This means our method returns the desired Nef-
Polyhedron. Otherwise, an empty NEF-polyhedron will be returned. The
option scaling will be shown at the next section.

2. Creator::convertPOLY(Nef_polyhedron& NPx, bool scaling=true).

This method converts NPx into a Polyhedron. Before the conversion, this
method tests the condition (2) with the member function
CGAL::Nef_polyhedron_3::is_simple(). This member function
returns true if NPx is 2-manifold. This means our method returns the

 91

desired Polyhedron. Otherwise, an empty Polyhedron is returned. The
option scaling will be cleared in next section.

In addition, since directly Nef-polyhedron creations is not possible, the
public method Creator::convertNEF() is called also internally for
building a Nef-polyhedron from STL-Containers as well as for scanning from
OFF files. In other words this method is necessary for all Nef-polyhedron
requests.

The main job of method Creator::convertPOLY() is converting the
result of Boolean set operations realized between two nef-structure, into
Polyhedrons. After this conversion it is possible -for the first time- to get
some outputs, with Outer in different file formats. Otherwise, the native
format NEF3 is one and only solution.

3.3.2.2 Kernel Limitations and Solutions

Another problem relates to kernel representations. We can select kernel
representation of a CGAL::Polyhedron_3 without any limitations. All
number types provided by the support library can be used with this class.
However, in case of CGAL::Nef_polyhedron_3, there are some limitations
to the selection of kernel representations. Under the suggestions of the
CGAL team, one of the following kernel representations is suitable for using
with 3D-Nef Polyhedron:

typedef CGAL::Cartesian<Gmpq> K;
typedef CGAL::Cartesian<Quotient<Gmpz> > K;
typedef CGAL::Cartesian<leda_rational> K;

typedef CGAL::Homogeneous<Gmpz> K;
typedef CGAL::Homogeneous<leda_integer > K;

The common property of these representations, they are parameterized with
the number types which are offers exact integers. Especially, the CGAL
team recommend for CGAL::Nef_polyhedron_3, the Homogeneous kernel
representation, which is parameterized with the number type CGAL::Gmpz.
In addition, LEDA is supported as commercially. It is not possible to use the
number types, which are offered by LEDA, before buying this library.

If Polyhedrons and Nef-Polyhedrons use the same kernel representations,
Polyhedrons will be subject to the same limitations as the Nef-polyhedrons.
In order to overcome this restriction, in our implementation, we offer the
possibility to select different kernel representations for Polyhedrons and the
Nef-Polyhedrons. In this case, our implementation carries out the kernel

 92

conversion internally between a Polyhedron and Nef_polyhedron. User
of our interface is free to select any kernel representation for Polyhedrons.
Nef-polyhedrons should be used only with allowed ones. This dual kernel
representation defined as follows:

// Number Types

typedef double NT1;
typedef CGAL::Gmpz NT2;

// Kernels

typedef CGAL::Cartesian<NT1> K1;
typedef CGAL::Homogeneous<NT2> K2;

// Type definitions for Polyhedron / NEF

typedef CGAL::Polyhedron_3<K1> Polyhedron;
typedef Polyhedron::HalfedgeDS HalfedgeDS;

typedef CGAL::Polyhedron_3<K2> Polyhedron_K2;

typedef CGAL::Nef_polyhedron_3<K2> Nef_polyhedron;

Here K1, our main kernel representation for all internal operations on
Polyhedrons. The kernel representation K2 is only used with the Nef-
Polyhedron related operations. But, of course, the user can define the same
kernel for both of K1 and K2. In this case, it is possible to use only the kernel
representations allowed by CGAL::Nef_polyhedron_3. The necessary
conversions between Polyhedrons and Nef-Polyhedron, are realized with the
secondary polyhedron type (Polyhedron_K2). This secondary type is used
the same kernel representation K2 with Nef-Polyhedrons. Necessary kernel
conversion is applied when user is requested a conversion between
Polyhedrons and Nef-Polyhedrons. The public method Creator::
convertNEF(Polyhedron& Px) is an example for this case. In order to
make this conversion, standard I/O streams are used:

 Polyhedron_K2 Px2;

 ofstream out("temp.OFF"); out << Px;
 ifstream in ("temp.OFF"); in >> Px2;

 Nef_Polyhedron NPx = Nef_polyhedron(Px2);

Another problem arose during the construction of
CGAL::Nef_polyhedron_3 because of small double coordinates received
from WSS data files. We first noticed this problem during the
implementation of the test releases of this module, and consulted with the

 93

CGAL team about this problem. This problem is also related to the limited
kernel representations. Since CGAL::Nef_polyhedron_3 uses exact
number representations during its construction, Nef-Polyhedrons need to
work with integer coordinates. In the simplification phase, the constructor
of CGAL::Nef_polyhedron_3 converts a triangulated surface into a Nef-
Polyhedron in that it reduces the coplanar faces to a single face. In this
phase, small double coordinates give some errors such as:

CGAL error: assertion violation!
Expr: pe_prev->facet()->plane().has_on(pe_target)
File: /home/alperix/tu/CGAL/include/CGAL/Nef_3/polyhedron_3_to_nef_3.h

The explanation about this problem delivered by the CGAL team is as
follows:

[…] Interesting for you, our representation demands that every vertex on the
boundary of a facet lies on the same supporting plane. If I have 4 or more vertices
on a facet represented by double coordinates, the rounding of the coordinates has an
unpleasant effect. Taking different triples of the vertices might define different
supporting planes. In this case we must triangulate the facet. We have written a
constructor for this recently which will be available in the next release. At the
moment we try to use triangulated objects with integer coordinates, only.

The suggested solution for this exceptional problem lies in scaling points. If
we multiply each coordinate with a high value such as ten thousand, one
million, etc., then we have not such errors anymore during the construction
phase. Therefore, the Creator describes some methods for scaling and
rescaling the vertices (points) of Polyhedrons. These point translations are
necessary before the conversions. Scaling methods are using a global scale
factor, which is multiplied with each point during the scaling and rescaling.
This solution is not an optimal one, but at the moment there are not other
known solutions to solve this problem.

The std::transform algorithm is used for necessary point translations.
For this translations are described two function object namely scaleP()
and rescaleP(). First one is used before Nef constructions. The method
Creator::convertNEF() calls this function object internally. Second one
for inverse translations, is used by the method
Creator::convertPOLY():

 transform(Px.points_begin(), Px.points_end(), Px.points_begin(), scaleP);

 94

This required transformation realized with this function objects replace all
vertices of requested polyhedron, with a scaled point by global values which
is named internally xScale / xRescale. This function objects take a point
defined as type K1::Point_3 and return back a recalculated point after
some kernel operations. As discussed in CGAL chapter, we can't multiply a
point with a scalar, but even a vector. Therefore with the help of constant
CGAL::ORIGIN, we make first the necessary vector conversion. The result
vector is reconverted to point before return back. Discussed conversion
should have following form for a point Cp:

 CGAL::ORIGIN + ((Cp - CGAL::ORIGIN) * xScale)

Global scale values defined as the number type NT1 which is used also by
the point type K1::Point_3. This is required for necessary multiplications.
With our test files 10000 was an optimized scale value. All WSS files are
unproblematic processed with this value. Over limit is depend on used
number type in kernel representation and has following form:

 NT1 xScale = NT1(10000);
 NT1 xRescale = NT1(0.0001);

Therefore the conversion methods of Creator have a second Boolean
argument named scaling. The default value of this argument is true.
This means scale operations will be applied during conversions. If this value
is false, then scale operations are skipped. This is necessary when we
work with the objects, which are not created by the Creator.

In conclusion, the Creator can automatically handle the above discussed
additional operations in different kernel representations. The CGAL team
has promised new constructors and more possibilities for the next release.

3.3.2.3 Creating Polyhedrons

Two different public methods are offered by the Creator for creating the
CGAL::Polyhedron_3 objects:

1. Creator::OFFtoPOLY(char* fname)

This method offers the direct creations from OFF files. We use the name
of these OFF files as a argument with this method. This method returns
a CGAL::Polyhedron_3 object, which is created from given OFF file

 95

with the help of standard input streams. Used OFF files here can be
stored in previous sessions with the module Extractor as well as with the
module Outer.

2. Creator::buildPOLY()

This method creates a polyhedron with the data stored in STL
containers. This data is stored by Extractor during previous extractions.
In this case, we use the incremental builder mechanism for creating
polyhedrons. The CGAL::Polyhedron_incremental_builder_3 is an
auxiliary class, which helps in creating polyhedral surfaces from points
and facets. This mechanism is originally designed for working with data
contents such as those of an OFF file with points and facets lists. This
mechanism is rather suitable not only for our work but also for
debugging during creations.

In order to be able to use these techniques the following CGAL header files
need to be included:

#include <CGAL/Polyhedron_3.h>
#include <CGAL/Polyhedron_incremental_builder_3.h>
#include <CGAL/IO/Polyhedron_iostream.h>

Technically, the class The CGAL::Polyhedron_incremental_builder_3
allows modifying the half-edge data structure, which is used by a
CGAL::Polyhedron_3 object. In order to make this modification, this class
uses another helper class of the CGAL, which is called as
CGAL::Modifier_base<R>. This helper class enables access to the
internal representation R of any object. In our case, the internal
representation of a CGAL::Polyhedron_3 object is a half-edge data
structure, which is defined previously as HalfedgeDS.

For using incremental builder mechanism, we need to describe a function
object, which is derived from CGAL::Modifier_base<HalfedgeDS>. The
CGAL::delegate() member function of a CGAL::Polyhedron_3 accepts
this function object and calls its operator() with a reference to its
internally used half-edge data structure. Therefore, we need to define an
operator()also within this function object. The skeleton of this function
object is described as follows:

template <class HDS>
class Builder:public CGAL::Modifier_base<HDS> {

 96

public:

 Builder(){} // constructor

 void operator()(HDS& hds) {

 // necessary definitions for incremental Builder..

 }

};

Before giving the necessary operator() definition for this mechanism, it
is necessary to introduce the interface of this utility class
CGAL::Polyhedron_incremental_builder_3. The following table bases
on the actual CGAL 3.1 documentation. The surface creation methods and
some additional operations of this auxiliary class are summarized as the
following:

Surface Creation Methods
void B.begin_surface (

size_type v, size_type f, size_type h= 0,
int mode = RELATIVE_INDEXING)

starts the construction. v is the number of new vertices to expect, f the number of new facets, and h
the number of new halfedges. If h is unspecified (== 0) it is estimated using Euler's equation (plus
5% for the so far unknown holes and genus of the object). These values are used to reserve space in
the halfedge data structure hds. If the representation supports insertion these values do not restrict
the class of constructible polyhedra. If the representation does not support insertion the object must
fit into the reserved sizes. If mode is set to ABSOLUTE_INDEXING the incremental builder uses
absolute indexing and the vertices of the old polyhedral surface can be used in new facets (needs
preprocessing time linear in the size of the old surface). Otherwise RELATIVE_INDEXING is used
starting with new indices for the new construction.

Vertex_handle B.add_vertex(Point_3 p) adds a new vertex and returns its

handle.
Facet_handle B.begin_facet() starts a new facet and returns its

handle.
void B.add_vertex_to_facet(size_type i)
adds a vertex with index i to the current facet. The first point added with add_vertex() has the index
0 if mode was set to RELATIVE_INDEXING, otherwise the first vertex in the referenced hds has the
index 0.

Halfedge_handle B.end_facet()
ends a newly constructed facet. Returns the handle to the halfedge incident to the new facet that
points to the vertex added first. The halfedge can be safely used to traverse the halfedge cycle
around the new facet.

void B.end_surface() ends the construction.

Additional operations

template <class InputIterator> Halfedge_handle
B.add_facet(InputIterator first,InputIterator beyond)
is a synonym for begin_facet(), a call to add_facet() for each value in the range [first,beyond), and a
call to end_facet(). Returns the return value of end_facet(). Precondition: The value type of

 97

InputIterator is std::size_t. All indices must refer to vertices already added.

template <class InputIterator> bool
B.test_facet (InputIterator first, InputIterator beyond)
Returns true if a facet described by the vertex indices in the range [first,beyond) can be successfully
inserted, e.g., with add_facet(first,beyond). Precondition: The value type of InputIterator is
std::size_t. All indices must refer to vertices already added

bool B.check_unconnected_vertices() returns true if unconnected vertices

are detected. If verbose was set to true (see the constructor above) debug
information about the unconnected vertices is printed.

bool B.remove_unconnected_vertices() returns true if all unconnected
vertices could be removed successfully. This happens either if no unconnected
vertices had appeared or if the halfedge data structure supports the removal
of individual elements.

Vertex_handle B.vertex(std::size_t i) returns handle for the vertex of index i, or
Vertex_handle if there is no i-th vertex.

void B.rollback() undoes all changes made to the halfedge data structure
since the last begin_surface() in relative indexing, and deletes the whole
surface in absolute indexing. It needs a new call to begin_surface() to start
inserting again.

Bool B.error() returns error status of the builder.

As seen in the table before, there are quite a lot of methods for testing,
undoing, and checking. Therefore, Incremental Builder Mechanism offers
good debug possibilities during the creations. We achieved the best format
for storing our list points and list facets with the help of these methods.
Since these lists have been already arranged to give the best results with
the Incremental Builder, the last version of our implementation does not use
all of the above functions. However, this extremely useful interface of the
Incremental Builder is introduced with its all functions, which might be
rather useful for future efforts. Since we have all facets counter-clockwise
oriented in our lists, we can add the vertices and facets in a uncomplicated
manner to the half-edged data structure. This process starts with the
method CGAL::begin_surface() and ends with the method CGAL::
end_surface(). During this process, we use the method
CGAL::add_vertex() for adding the points, and the method
CGAL::add_facet() for adding the facets, as shown in the code below.
This code gives the necessary operator() definition for our template
Builder:

void operator()(HDS& hds) {

 int i;
 Face tri;

 int nop = points.size();

 98

 int nof = facets.size();

 CGAL::Polyhedron_incremental_builder_3<HDS> PH(hds, true);

 PH.begin_surface(nop, nof, 0);

 for (i=0; i<nop; i++)
 PH.add_vertex(points[i]);

 for (i=0; i<nof; i++) {
 tri=facets[i];
 PH.add_facet(tri.begin(), tri.end());
 }

 PH.end_surface();
}

As shown above, the CGAL::Polyhedron_incremental_builder_3 is
instantiated within the scope of operator(). The constructor of this class
is defined as follows:

 Polyhedron_incremental_builder_3<HDS> B(HDS& hds, bool verbose = false);

After instantiation, CGAL::Polyhedron_incremental_builder_3 stores
a reference to the hds of a polyhedral surface in its internal state. An
existing polyhedral surface in hds remains unchanged. The incremental
builder appends the new polyhedral surface. The default value of verbose
is false which means that there are no diagnostic messages. If verbose is
true, diagnostic messages will be printed to std::cerr in case of
malformed input data.

The Builder template is instantiated within the scope of private method
Creator::buildPolyhedron():

 Px.clear(); // clearing the actual Polyhedron_3 instance
 Builder<HalfedgeDS> PHDS; // Get an instance for Builder
 Px.delegate(PHDS); // delegation

 Px.normalize_border(); // Reordering border edges

As shown in the code above, first, a Builder template is instantiated. This
instance is used by a polyhedron object Px with the member function
CGAL::delegate(). After delegation, we have a polyhedron which its half-
edge data structure is created (modified) with the operator() of Builder.
The last necessary step is normalization of border edges. The normalization
reorganizes the sequential storage of the edges such that the non-border

 99

edges precede the border edges. Insert and delete operations on Half-edge
data structure, change the border status of halfedges. Since this is not
automatically updated by CGAL::Polyhedron_incremental_builder_3,
member function CGAL::normalize_border() should be used after
delegation. After this operation, our Polyhedron Px has correct surface
structure, which can be used truthful in later steps. It is possible to test the
validity of Px, with the methods of module Checker.

3.3.2.4 Creating NEF-Polyhedrons

As discussed in chapter 3.2.2.1, it is not possible to create Nef-polyhedrons
directly from the points and facets. Therefore, some of the offered methods
for creating Nef-Polyhedrons use the methods of Creator, which are used for
creating Polyhedrons. Three different public methods are offered for
creating polyhedrons:

1. Creator::BuildNEF()

This method offers the creations from the content of STL containers. It
uses two steps for creating a Nef-Polyhedron:
• Building a CGAL::Polyhedron_3 object via Creator::

BuildPOLY() with the data stored in STL containers;
• Calling the method Creator::convertNEF() for converting the

result object into a CGAL::Nef_polyhedron_3.

2. Creator::OFFtoNEF(char* fname)

This method offers the creations from OFF files. Used OFF files here can
be stored in previous sessions with the module Extractor as well as with
the module Outer. It uses also two steps for creating a Nef-Polyhedron:
• Scanning a CGAL::Polyhedron_3 object via Creator::

OFFtoPOLY() from an externally stored OFF file;
• Calling the method Creator::convertNEF() for converting the

result object into a CGAL::Nef_polyhedron_3.

3. Creator::NEF3toNEF(char* fname)

This method offers the direct creations from NEF3 files. This method
returns a CGAL::Polyhedron_3 object, which is created from given
NEF3 file with the help of standard input streams. These NEF3 files
here can be stored with the module Outer.

 100

In order to be able to use these methods the following CGAL header files
need to be included:

#include <CGAL/Nef_polyhedron_3.h>
#include <CGAL/IO/Nef_polyhedron_iostream_3.h>

CGAL already offers the using of operators +,-,*,^ to applying Boolean set
operations on created objects. Nevertheless, a method is also added to our
object Creator for user convenience. This public method returns a
CGAL::Nef_polyhedron_3, which contains the result of Boolean set
operation between N1 and N2. This is useful for applying necessary Boolean
set operations one by one into a loop. The method Creator::boolNEF()
described as follows with the necessary enumeration:

enum boolOP { INT,UNI,SYM,D12,D21 }; // { * , + , ^ , N1-N2 , N2-N1 }

Nef_polyhedron Creator::boolNEF(
 Nef_polyhedron& N1,Nef_polyhedron& N2, boolOP op)

A difference in our method is the result of operation regularized with the
CGAL::Nef_polyhedron_3::regularization(). This method returns to
the closure of the interior of a Nef-polyhedron. Regularized set operations
are already discussed in CGAL chapter.

3.3.3 Displayer

The main job of module Displayer is viewing the created objects with the
module Creator. Furthermore, Displayer describes also some methods for
visual debugging. These methods could be used for viewing the data stored
in STL containers as well as for displaying an OFF file directly.

These following methods are provided by Displayer:

1. Displayer::view(Polyhedron& Px)

This method displays the Polyhedron Px, in geomview.

2. Displayer::view(Nef_Polyhedron& NPx)
This method displays the Nef-Polyhedron NPx, in a QT-Widget.

3. Displayer::view_OFF(char* fname)
This method displays an OFF file, in geomview.

 101

4. Displayer::view_POINTS()
This method displays the points from container points, in geomview.

5. Displayer::view_FACETS()
This method displays the facets from container facets, in geomview.

6. Displayer::clear()
This method clears the content of certain geomview stream.

In order to be able to use these methods the following CGAL header files
need to be included:

#include <CGAL/IO/Geomview_stream.h>
#include <CGAL/IO/Polyhedron_geomview_ostream.h>
#include <CGAL/IO/Qt_widget_Nef_3.h>
#include <qapplication.h>

CGAL describe an iostream for Geomview to visualize some geometric
objects such as points, lines, triangles etc. Displaying a polyhedron is also
possible with the help of this stream. In second header file above defined
also an output stream for CGAL::Polyhedron_3. Our methods described in
Displayer, are used this stream to displaying points, triangles and
polyhedrons. One stream is used for each instance of Displayer. Formally, a
geomview stream gs is instantiated in followed form:

 Geomview_stream gs (Bbox_3 bbox = Bbox_3(0,0,0, 1,1,1),
 const char *machine = NULL,
 const char *login = NULL);

Fig 3.5. The module Displayer.

 102

This introduces a Geomview stream gs with a camera that sees the
bounding box. The command geomview must be in the user's PATH. If
machine and login are not NULL, Geomview is started on the remote
machine using rsh. We are instantiated this streams in our implementation
with default values. The relevant dialogs of Geomview are illustrated in the
Figure 3.6.

As seen in figure 3.6, this visualization tool has mainly three components for
displaying geometric objects: Tools, Main Window and Camera view. The
Tools provides basic translations on geometric objects. The Main Window
has a list of objects in Targets section. This section makes possible to
modifying the attributes of selected object individually. If the item World is
selected, then all objects are affected from modifications. Objects are
displayed in Camera view.

Fig 3.6. The relevant dialogs of Geomview.

 103

The Appearance dialog helps you to make the modifications such as colour
and line widths. In addition, some results of the Boolean set operations
contain some facets on the surface, which are not convex. These concave
facets are giving some problems in visualization. The Concave switch in
Appearance dialog solves this problem. Fig. 3.7 illustrates an example
surface, which contains some concave facets. As seen below, the enabling of
Concave switch shows the object with right facets.

After the instantiation, this stream can easily used for displaying the
desired object:

 gs << CGAL::GREEN << Px;

Some of the useful commands to manipulate this stream were liste here.

Color gs.set_bg_color (Color c) Changes the background color. Returns the old

value.
Color gs.set_vertex_color(Color c) Changes the vertex color. Returns the old value
Color gs.set_edge_color(Color c) Changes the edge color. Returns the old value.
Color gs.set_face_color(Color c) Changes the face color. Returns the old value.
void gs.clear() Deletes all objects.
void gs.look_recenter() Positions the camera in a way that all objects

can be seen.
int gs.get_line_width() Returns the line width.
int

gs.set_line_width(int w) Sets the line width to w. Returns the previous
value.

bool gs.get_wired() Returns true iff wired mode is on.
bool gs.set_wired(bool b) Sets wired mode. In wired mode, some

structures output only there edges, not there
surfaces. Returns the previous value. By default,
wired mode is off.

Fig 3.7. Concave switch of Geomview.

 104

An object of the class CGAL::Color is a color available for drawing
operations in CGAL output streams. Each color is defined by a triple of
integers (r,g,b) with 0 , , 255r g b≤ ≤ , the so-called rgb-value of the color.
Some constants are also predefined such as CGAL::BLACK or CGAL::WHITE.

To displaying a NEF-Polyhedron, it is not possible to using Geomview.
Therefore, we are used QT-Widget mechanism to displaying Nef-
Polyhedrons. The class CGAL::Qt_widget_Nef_3 uses the OpenGL
interface of Qt to display a CGAL::Nef_polyhedron_3. The atom of the Qt
user interface is called widget. A widget receives mouse, keyboard and other
events from the window system, and paints a representation of itself on the
screen. You can find more details in [Wr06]. Its purpose to provide an easy
to use viewer for CGAL::Nef_polyhedron_3. User can access the all
options to modifying viewed objects via the right mouse button such as
rotating, scaling etc. In Fig 3.8 are illustrated all available options.

This widget mechanism can be used to displaying a
CGAL::Nef_polyhedron_3 in following form:

 typedef CGAL::Qt_widget_Nef_3<Nef_polyhedron> QTNef;

 Nef_polyhedron NPx;
 QTNef* widget = new QTNef(NPx);

 QApplication app(argc,argv);
 app.setMainWidget(widget);
 widget->show();

 app.exec();

Fig 3.8. The QT-Widget viewer.

 105

As seen above, before the instantiation of a widget, the class
CGAL::Qt_widget_Nef_3 is parameterized with the Nef_polyhedron,
which is contained certain kernel representation of Nef-polyhedrons.
Instantiated widget for Nef-Polyhedron NPx is used as main widget in the
instance of QApplication. The method QApplication::exec() executes
an application who shows initially the main widget.

The figure 3.9 shows the results of the different methods of Displayer on
same object. The small windows on the bottom-right of windows truncated
from the related object lists in targets section of Geomview. It is possible to
find each point/triangle of related object with the help of these lists.

Fig 3.9. The methods of Displayer.

 106

3.3.4 Outer

The module Outer gives outputs from created objects in different file
formats. In order to make this, the Outer uses the output streams, which are
already defined by CGAL.

The module Outer provides following public methods:

1. Outer::OFF(Polyhedron& Px, char* fname)

This method writes out an OFF file from polyhedron Px. The standard
output streams are used to writing OFF files. The extension ".OFF" is
added into the name of created file.

2. Outer::VRML1(Polyhedron& Px, char* fname)

This method writes out a VRML 1.0 file from the polyhedron Px. The
stream CGAL::VRML_1_ostream is used to writing this file. The
extension ".VRML1" is added into the name of created file.

3. Outer::VRML2(Polyhedron& Px, char* fname)

This method writes out a VRML 2.0 file from the polyhedron Px. The
stream CGAL::VRML_2_ostream is used to writing this file. The
extension ".VRML2" is added into the name of created file.

4. Outer::OBJ(Polyhedron& Px, char* fname)

Fig 3.11. The module Outer.

 107

This method writes out a Wavefront object file from the polyhedron Px.
The method CGAL::print_wavefront() is used with the standard
output streams to writing this file. The extension ".OBJ" is added into the
name of created file.

5. Outer::IV(Polyhedron& Px, char* fname)

This method writes out a Open Inventor file from the polyhedron Px. The
stream CGAL::Inventor_ostream is used to writing this file. The
extension ".IV" is added into the name of created file.

6. Outer::NEF3(Nef_polyhedron& NPx, char* fname)

This method writes an NEF3 file from the NEF-polyhedron NPx. The
standard output streams are used to writing NEF3 files. The extension
".NEF3" is added into the name of created file.

In order to be able to use these methods the following CGAL header files
need to be included:

 #include <CGAL/IO/Polyhedron_iostream.h>
 #include <CGAL/IO/Nef_polyhedron_iostream_3.h>
 #include <CGAL/IO/Polyhedron_inventor_ostream.h>
 #include <CGAL/IO/Polyhedron_VRML_1_ostream.h>
 #include <CGAL/IO/Polyhedron_VRML_2_ostream.h>
 #include <CGAL/IO/print_wavefront.h>

As seen above, the methods of Outer for writing polyhedrons are used output
streams, which are defined by CGAL. These streams convert internally the
coordinates of points into double coordinates during the writing files. It is
not possible to get a file from polyhedrons with the certain kernel
representation. Therefore, we are described an additional template for
writing a polyhedron in certain kernel representation. This template is
added to the header file, namely outer.h, which contains the module
Outer. The interface of this template described as follows:

 template <class Poly> void write_OFF(char* fname, const Poly& P);

This method can be used as follows in any session, which the header file
outer.h included:

 write_OFF<Polyhedron>(filename, Px);

 108

In order to accessing the points and facets of a polyhedron, we are used
following iterators and also a circulator:

 typedef typename Poly::Vertex_const_iterator VCIt;
 typedef typename Poly::Facet_const_iterator FCIt;
 typedef typename Poly::Halfedge_around_facet_const_circulator HFCCirc;

This method first access the points of a polyhedron via
CGAL::Polyhedron_3::Vertex_const_iterator. The received
coordinates of points with the help of this iterator, are stored into an std::
ofstream :

 // Writing Points
 for(VCIt vi = Px.vertices_begin(); vi != Px.vertices_end(); ++vi) {
 out << vi->point().x() << " ";
 out << vi->point().y() << " ";
 out << vi->point().z() << "\n";
 }

As second step, it access the facets of polyhedron via
CGAL::Polyhedron_3:: Facet_const_iterator. The points of received
facets are visited with the help of CGAL::Polyhedron_3::
Halfedge_around_facet_const_circulator. To find the number of
vertices in certain facet are used the function CGAL::circulator_size().
To find the order of points are used std::distance() algorithm.

 // Writing Facets
 for (FCIt fi = Px.facets_begin(); fi != Px.facets_end(); ++fi) {

 HFCCirc HFc = fi->facet_begin();

 out << CGAL::circulator_size(HFc) << ' ';

 do { out << ' '
 out << std::distance(Px.vertices_begin(), HFc->vertex());
 } while (++HFc != fi->facet_begin());

 out << std::endl;
 }

Since the points are rot from polyhedrons in original kernel representation,
our template Write_OFF<Polyhedron> is guaranteed the original
coordinates of points in the output. This method is also useful for debugging.

 109

3.3.5 Checker

The module Checker gives the possibility to the user, for checking created
objects with the module Creator. These methods are not only for checking
the validity of created objects, but they also give the significant information
about desired object.

The methods of Checker use the predicates of related object to access
required information. The default output stream is std::cout, which the
results of the predicates are written. Hovewer user can give any standard
output stream for outputs.

The module Checker provides two public methods:

1. Checker::CheckOut(Polyhedron& Px, ostream& out = std::cout)

This method checks the Polyhedron Px, and, writes the results into
standard output stream out. The default output stream is std::cout.

By checking of a polyhedron, following information is displayed:

[Info_POLY]:

 VALIDITY : [4] The level of validity
 CLOSED : [1] is closed ?
 TRIANGLES: [1] are all facets triangles?
 ALLOCATED: [10.8438 Kb] the size of the polyhedron
 |V| = 53 number of vertices
 |F| = 102 number of facets
 |He| = 306 number of half-edges

Fig 3.10. The module Checker.

 110

2. Checker::CheckOut(Nef_polyhedron& NPx, ostream& out= std::cout)

This method checks the Nef-Polyhedron NPx, and, writes the results into
standard output stream out. The default output stream is std::cout.
Following information is displayed:

[Info_NEF]:

 VALIDITY : [OK] is valid?
 2-MANIFOLD: [1] is simple?
 ALLOCATED : [4.51562 Kb] the size of the nef polyhedron
 |V| = 8 number of vertices
 |F| = 6 number of facets
 |He| = 24 number of half-edges
 |E| = 12 number of edges
 |Hf| = 12 number of half-facets
 |Vol|= 2 number of volumes

CGAL describes some combinatorial predicates to test the surface structure
as well as some functions to give the information about data structure. Our
methods display the results of this member functions. Used member
functions and explanations of them are summarized here.

To check the polyhedrons following member functions of
CGAL::Polyhedron_3: are used

Return type Function Explanation
bool P.is_valid() Checks the integrity of P.
bool P.empty() Returns true if P is empty.
bool P.is_closed() Returns true if there are no border edges.
bool P.is_pure_triangle() Returns true if all facets are triangles.
size_type P.size_of_vertices() Returns the number of vertices.
size_type P.size_of_halfedges() Returns the number of halfedges (inclusive border

halfedges).
size_type P.size_of_facets() Returns the number of facets.
size_t P.bytes() Returns the bytes used for the polyhedron.

For checking the integrity of a polyhedron, the member function CGAL::
Polyhedron_3::is_valid() is used. This method checks the validity of
half-edge data structure. It returns true if the polyhedral surface is
combinatorial consistent:

 bool Px.is_valid (bool verbose = false, int level = 0)

 111

Our method tests the requested CGAL::Polyhedron_3 object with the
help of this member function, and, displays the level of validity. If verbose
is true, statistics are printed to std::cerr. The argument level contains
a value between 0 and 4. Level 0 is a complete test for internal incidencies.
Level 1 to 4 some additional checks to Level 0. The tests made for each level
summarized here [Cd01] :

Level 0 : The number of halfedges is even. All pointers except the vertex pointer and the face
pointer for border halfedges are unequal to their respective default construction value.

• For all halfedges h: The opposite halfedge is different from h and the opposite of the

opposite is equal to h. The next of the previous halfedge is equal to h.
• For all vertices v: the incident vertex of the incident halfedge of v is equal to v. The

halfedges around v starting with the incident halfedge of v form a cycle.
• For all faces f: the incident face of the incident halfedge of f is equal to f. The halfedges

around f starting with the incident halfedge of f form a cycle.

Level 1 : All tests of level 0. For all halfedges h: The incident vertex of h exists and is equal
to the incident vertex of the opposite of the next halfedge. The incident face (or hole) of h is
equal to the incident face (or hole) of the next halfedge.

Level 2 : All tests of level 1. The sum of all halfedges that can be reached through the
vertices must be equal to the number of all halfedges, i.e., all halfedges incident to a vertex
must form a single cycle.

Level 3 : All tests of level 2. The sum of all halfedges that can be reached through the faces
must be equal to the number of all halfedges, i.e., all halfedges surrounding a face must
form a single cycle (no holes in faces).

Level 4 : All tests of level 3 and run also method CGAL::normalized_
border_is_valid. This method returns true if the border halfedges are in normalized
representation, which is when enumerating all halfedges with the halfedge iterator the
following holds: The non-border edges precede the border edges. For border edges, the second
halfedge is a border halfedge. (The first halfedge may or may not be a border halfedge.) The
halfedge iterator CGAL::border_halfedges_begin() denotes the first border edge.

For checking the Nef-polyhedrons following member functions of
CGAL::Nef_Polyhedron_3: are used.

Return type Function Explanation
bool NP.is_valid() checks the integrity of NP .
bool NP.is_empty() returns true if NP is empty.
bool NP.is_simple() returns true, if NP is a 2-manifold.
size_type NP.number_of_vertices() Returns the number of vertices.
size_type NP.number_of_edges() Returns the number of edges.
size_type NP.number_of_facets() Returns the number of facets.
size_type NP.number_of_volumes() Returns the number of volumes.
size_type NP.number_of_halffacets() Returns the number of halffacets.
size_type NP.number_of_halfedges() Returns the number of halfedges.
size_t NP.bytes() Returns the bytes used for the Nef- polyhedron.

 112

3.3.6 Header Files and Globals

In order to response the demands of different kinds of applications; we are
defined an extra header file, namely globals.h. This header file contains
the necessary header files of libraries, which are used in our
implementation. The global type definitions and variables are also added
the end of this file. User can define session specific requirements in this file.
This file should be included in each session which is used our interface.
Other modules can work with the definitions, which are contained by this
header file. In short, globals.h pre-defines the variable content, which is
according to session requirements.

This file must have the include definitions for following C++ standard
header files:

<iostream>, <fstream>, <vector>, <algorithm>, <stdlib.h>

To work regular with our interface, following CGAL header files must be
included. This header files are necessary to using our implementations:

<CGAL/Cartesian.h>
<CGAL/Homogeneous.h>

<CGAL/Polyhedron_3.h>
<CGAL/Nef_polyhedron_3.h>
<CGAL/Polyhedron_incremental_builder_3.h>

<CGAL/IO/Polyhedron_iostream.h>
<CGAL/IO/Nef_polyhedron_iostream_3.h>

Since they provide module specific requirements, some of the header files
can be excluded. These files are required only in some sessions in which are
used related module. Following WSS header files are necessary, when the
module Extractor is used in a session:

 <wssreader.hh>, <waf_config.hh>, <wafertools.hh>

Following header files are necessary, when the module Displayer is used in
a session:

<CGAL/IO/Geomview_stream.h>
<CGAL/IO/Polyhedron_geomview_ostream.h>

 113

<CGAL/IO/Qt_widget_Nef_3.h>
<qapplication.h>

Following CGAL header files are necessary, when the module Outer is used
in a session:

<CGAL/IO/Polyhedron_inventor_ostream.h>
<CGAL/IO/Polyhedron_VRML_1_ostream.h>
<CGAL/IO/Polyhedron_VRML_2_ostream.h>
<CGAL/IO/print_wavefront.h>

Furthermore, the necessary header files for selected kernel representation
(of Polyhedron and Nef-polyhedron) should be included too. Some of them
are listed here:

<CGAL/Gmpz.h>
<CGAL/Gmpq.h>
<CGAL/Quotient.h>
<CGAL/MP_Float.h>
<CGAL/Exact_predicates_exact_constructions_kernel.h>

After the include definitions of header files, global.h contains the
necessary type definitions. These type definitions allow the ordinary use of
interface requirements.

// Number Types
typedef CGAL::Gmpq NT1;
typedef CGAL::Gmpz NT2;

// Kernel representations
typedef CGAL::Cartesian<NT1> K1;
typedef CGAL::Homogeneous<NT2> K2;

// Containers
typedef std::vector<K1::Point_3> PointList;
typedef std::vector<int> Face;
typedef std::vector<Face> FaceList;

// Polyhedral structures
typedef CGAL::Polyhedron_3<K1> Polyhedron;
typedef Polyhedron::HalfedgeDS HalfedgeDS;
typedef CGAL::Polyhedron_3<K2> Polyhedron_K2;
typedef CGAL::Nef_polyhedron_3<K2> Nef_polyhedron;

The number types and kernel representations can be modified under the
considerations, which are discussed in chapter 3.2.2.2. For usual

 114

applications, the part containers and polyhedral structures should not be
modified. These definitions are already optimized for better solution.

The last part of global.h contains the global variables, which are used by
the modules. These global variables defined as follows:

PointList points;
FaceList facets;

NT1 xScale = NT1(10000);
NT1 xRescale = NT1(0.0001);

enum boolOP { INT,UNI,SYM,D12,D21 };

bool xVerbose = false;

The global lists points and facets are our STL containers. These
containers are used with all modules except the module Outer. All modules
can access the data coming from last extraction, with the help of these
global containers.

As discussed in chapter 3.3.2.2, the global variables xScale and xRescale
are used in conversions between polyhedrons and Nef-Polyhedrons. The
enumeration type boolOP are used to denote the name of desired Boolean
set operations. This is also discussed in chapter 3.3.2.4. These globals are
used only with the methods of the module Creator.

The global xVerbose provides the debugging mode with our interface. The
default value is false. This means no diagnostic messages. Otherwise,
when xVerbose is true, user can trace related diagnostic messages from
std::cerr. This variable affects the following methods of our interface:

• Creator::buildPOLY()
• Creator::buildNEF()
• Creator::OFFtoPOLY()
• Creator::OFFtoNEF()
• Checker::CheckOUT()
• Displayer::view_OFF()

 115

3.4 Using of the Interface

As discussed previously, for processing the WSS data files with our interface
we have defined six header files. With the modules defined in these header
files, is possible to apply the Boolean set operations on 3D-solid objects.
These objects are created from the surfaces of wafer components, which are
received from WSS data files. The modules create CGAL polyhedral
structures on which are possible to apply Boolean set operations. The
modules allow also additional facilities: displaying, debugging and outputs
in different file formats.

In this section, we want to give some examples about the using of our
interface for diverse purposes. We want to start with the initial
requirements of each kinds of session.

Since it contains the basic requirements, the header file globals.h is
must be included in each session. Other header files are optional; we can
include them when necessary. These include definitions should be at the
start of the code:

#include <globals.h>
#include <extractor.h>
#include <creator.h>
#include <displayer.h>
#include <checker.h>
#include <outer.h>

In general, we need some variables to store the created objects. Therefore,
as a second step, we should define these variables, which are contained
polyhedrons and Nef-Polyhedrons. In order to make this, there is no
limitation. User can store this objects such as follows in arrays as well as in
different kind of STL containers. It depends on the kind of application,
which data structure is better to store this objects.

 Polyhedron P[3], Q;
 Nef_polyhedron NP[3], NQ;

 std::vector<Polyhedron> P;
 std::list<Nef_polyhedron> NP;

To assume, we want to make an intersection operation between two wafer
components, and, we want to display the result of operation. In this session,
we need only following definition:

 116

 Nef_polyhedron NP[3];

 Extractor WSS0("file0.wss"), WSS1("file1.wss");
 Creator CRE;
 Displayer VIS;

 WSS0.extract(); NP[0]=CRE.buildNEF();
 WSS1.extract(); NP[1]=CRE.buildNEF();

 NP[2] = NP[0] * NP[1]; // intersection

 VIS.view(NP[2]);

And now, we want to some outputs in different file formats. In this case we
need an instance from the module Outer:

 Outer OUT;

Polyhedron P = CRE.convertPOLY(NP[2]);

VIS.view(P); // Display the result in geomview.

 OUT.OFF(P, "result");
OUT.IV(P, "result");
OUT.VRML1(P, "result");

When we want to check our creations, we need an instance of Checker.

Checker CHK;

for (int i=0; i<3; i++)

 CHK.checkOut(NP[i]);

 CHK.checkOut(P);

Assume that, we have a WSS data file, which contains multiple segments.
And we want to extract each segment of this file, but we want to process
these extractions in later sessions. Now, we want to display the extractions.

Extractor WSS("multi.wss");
Displayer VIS;

Polyhedron P;
char fname[12];

int nos = WSS.getNOS(); // get the number of segments

for (int seg=0; seg<nos; seg++) {

 WSS.extract(seg);
 sprintf(fname, "seg#0%d.OFF",seg);

 117

 WSS.buildOFF(fname);
 VIS.view_OFF(fname);

 }

Of course, this technique can be used in ever session, which needs to process
multiple files. In order to make this, the filenames should have same prefix
or postfix. It is easy to use in a loop when the filenames are numbered
sequentially. The stored segments above can be used for creating nef
polyhedrons in another session. In this session, it is not necessary to include
Extractor. In other words, we don't need anymore WSS I/O interface.
Therefore, this technique is more cost-efficient. To assume that, we have
write nos segment in the session above:

 Creator CRE;

 std::vector<Nef_polyhedron> Nefs;

for (int seg=0; seg<nos; seg++) {
 sprintf(fname, "seg#0%d.OFF",seg);
 Nefs.push_back(CRE.OFFtoNEF(fname));
 }

To assume that, we have a vector container Nefs . This container contains
some Nef polyhedrons, which are previously created with our interface. We
want to see the union of all objects, which are stored within this container.
Then we want to see the intersection, difference, etc. We want to display the
Nef-results. We should write out these results as Wavefront object files.
Furthermore, we want to check the results before these outputs.

 Creator CRE;
 Displayer VIS;
 Outer OUT;
 Checker CHK;

 Nef_polyhedron Result;
 Polyhedron P;
 char fname[8];

for (int j=0; j< 5; j++) { // five Boolean set operation

 Result.clear();

 for (int i=0; i< Nefs.size(); i++) // for each object

 Result = CRE.boolNEF(Result, Nefs[i], boolOP(j));

 VIS.view(Result);
 P = CRE.convertPOLY(Result); // necessary for output
 CHK.checkout(P);

 sprintf(fname, "bool#0%d ",j);

 118

 OUT.OBJ(P,fname);

 }

 119

Chapter 4

Results and Outputs

Information's pretty thin stuff unless mixed with experience.

Clarence Day

 120

Chapter 4

4. Results and Outputs
The above-mentioned modules were implemented and tested in an Acer
Travelmate 290 notebook computer with an Intel Pentium ® M Processor
(Centrino) at 1.5 GHz and 512 Mb RAM. The following is the software
configuration used with the operating system Suse Linux 9.3:

• CGAL 3.1
• Geomview 1.8.1-4-i386
• Trolltech QT-X11-Free 3.3.3
• GMP 4.1.4

Following the installation of the CGAL 3.1, the necessary WSS header files
and libraries were transferred into the CGAL's include and lib directories.
A modified makefile was created for the adoption of the WSS, which can be
found in appendices. This modified makefile includes the standard CGAL
make-file internally.

For testing our programming interface, ten different WSS data files were
used. These files were numbered between W0 and W9. In case of WSS data
files with multiple segments, the segements were indicated as postfixes. For
instance, W0.1 refers to the first segment of the W0. This notation was used
in all tables. The kernel representation and global definitions used for
receiving these test results are as follows:

// Number Types
typedef CGAL::Gmpq NT1;
typedef CGAL::Gmpz NT2;

// Kernels
typedef CGAL::Cartesian<NT1> K1;
typedef CGAL::Homogeneous<NT2> K2;

// Global values
NT1 xScale = NT1(10000);
NT1 xRescale = NT1(0.0001);
bool xVerbose = false;

Objects created from the WSS data files and their related properties are
summarized in following list. Items shown in this list were generated with
the help of the modules Displayer and Checker. Meanings of the outputs
generated by the module Checker have already been explained earlier in the
chapter 3.3.5:

 121

 POLYHEDRON NEF POLYHEDRON

Name view(P) checkOut(P) view(NP) CheckOut(NP)

Test File : wafer0.wss Number of segments: 3

W0

VALIDITY : [4]
CLOSED : [1]
TRIANGLES: [1]
ALLOCATED: [10.8438 Kb]

 |V| = 53
 |F| = 102
 |He| = 306

VALIDITY : [OK]
2-MANIFOLD: [1]
ALLOCATED : [4.51562 Kb]

 |V| = 8
 |F| = 6
 |He| = 24
 |E| = 12
 |Hf| = 12
 |Vol|= 2

W0.0

VALIDITY : [4]
CLOSED : [1]
TRIANGLES: [1]
ALLOCATED: [5.57031 Kb]

 |V| = 28
 |F| = 52
 |He| = 156

VALIDITY : [OK]
2-MANIFOLD: [1]
ALLOCATED : [4.51562 Kb]

 |V| = 8
 |F| = 6
 |He| = 24
 |E| = 12
 |Hf| = 12
 |Vol|= 2

W0.1

VALIDITY : [4]
CLOSED : [1]
TRIANGLES: [1]
ALLOCATED: [5.78125 Kb]

 |V| = 29
 |F| = 54
 |He| = 162

VALIDITY : [OK]
2-MANIFOLD: [1]
ALLOCATED : [4.51562 Kb]

 |V| = 8
 |F| = 6
 |He| = 24
 |E| = 12
 |Hf| = 12
 |Vol|= 2

W0.2

VALIDITY : [4]
CLOSED : [1]
TRIANGLES: [1]
ALLOCATED: [5.99219 Kb]

 |V| = 30
 |F| = 56
 |He| = 168

VALIDITY : [OK]
2-MANIFOLD: [1]
ALLOCATED : [4.51562 Kb]

 |V| = 8
 |F| = 6
 |He| = 24
 |E| = 12
 |Hf| = 12
 |Vol|= 2

Test File : wafer1.wss Number of segments: 1

W1

VALIDITY : [4]
CLOSED : [1]
TRIANGLES: [1]
ALLOCATED: [5.99219 Kb]

 |V| = 30
 |F| = 56
 |He| = 168

VALIDITY : [OK]
2-MANIFOLD: [1]
ALLOCATED : [22.4609 Kb]

 |V| = 30
 |F| = 36
 |He| = 128
 |E| = 64
 |Hf| = 72
 |Vol|= 2

Test File : wafer2.wss Number of segments: 1

 122

W2

VALIDITY : [4]
CLOSED : [1]
TRIANGLES: [1]
ALLOCATED: [9.78906 Kb]

 |V| = 48
 |F| = 92
 |He| = 276

VALIDITY : [OK]
2-MANIFOLD: [1]
ALLOCATED : [8.82812 Kb]

 |V| = 16
 |F| = 10
 |He| = 48
 |E| = 24
 |Hf| = 20
 |Vol|= 2

Test File : wafer3.wss Number of segments: 1

W3

VALIDITY : [4]
CLOSED : [1]
TRIANGLES: [1]
ALLOCATED: [8.10156 Kb]

 |V| = 40
 |F| = 76
 |He| = 228

VALIDITY : [OK]
2-MANIFOLD: [0]
ALLOCATED : [12.6797 Kb]

 |V| = 20
 |F| = 18
 |He| = 70
 |E| = 35
 |Hf| = 36
 |Vol|= 2

Test File : wafer4.wss Number of segments: 1

W4

VALIDITY : [4]
CLOSED : [1]
TRIANGLES: [1]
ALLOCATED: [15.6953 Kb]

 |V| = 76
 |F| = 148
 |He| = 444

VALIDITY : [OK]
2-MANIFOLD: [1]
ALLOCATED : [8.82812 Kb]

 |V| = 16
 |F| = 10
 |He| = 48
 |E| = 24
 |Hf| = 20
 |Vol|= 2

Test File : wafer5.wss Number of segments: 1

W5

VALIDITY : [4]
CLOSED : [1]
TRIANGLES: [1]
ALLOCATED: [12.0781 Kb]

 |V| = 57
 |F| = 114
 |He| = 342

VALIDITY : [OK]
2-MANIFOLD: [0]
ALLOCATED : [8.875 Kb]

 |V| = 16
 |F| = 10
 |He| = 48
 |E| = 24
 |Hf| = 20
 |Vol|= 2

Test File : wafer6.wss Number of segments: 2

W6

VALIDITY : [4]
CLOSED : [1]
TRIANGLES: [1]
ALLOCATED: [9.36719 Kb]

 |V| = 46
 |F| = 88
 |He| = 264

VALIDITY : [OK]
2-MANIFOLD: [1]
ALLOCATED : [8.82812 Kb]

 |V| = 16
 |F| = 10
 |He| = 48
 |E| = 24
 |Hf| = 20
 |Vol|= 2

W6.0

VALIDITY : [4]
CLOSED : [1]
TRIANGLES: [1]
ALLOCATED: [7.67969 Kb]

 |V| = 38
 |F| = 72
 |He| = 216

VALIDITY : [OK]
2-MANIFOLD: [1]
ALLOCATED : [4.51562 Kb]

 |V| = 8
 |F| = 6
 |He| = 24
 |E| = 12
 |Hf| = 12
 |Vol|= 2

 123

W6.1

VALIDITY : [4]
CLOSED : [1]
TRIANGLES: [1]
ALLOCATED: [3.03906 Kb]

 |V| = 16
 |F| = 28
 |He| = 84

VALIDITY : [OK]
2-MANIFOLD: [1]
ALLOCATED : [4.51562 Kb]

 |V| = 8
 |F| = 6
 |He| = 24
 |E| = 12
 |Hf| = 12
 |Vol|= 2

Test File : wafer7.wss Number of segments: 2

W7

VALIDITY : [4]
CLOSED : [1]
TRIANGLES: [1]
ALLOCATED: [183.18 Kb]

 |V| = 870
 |F| = 1736
 |He| = 5208

VALIDITY : [OK]
2-MANIFOLD: [1]
ALLOCATED : [486.699 Kb]

 |V| = 573
 |F| = 843
 |He| = 2828
 |E| = 1414
 |Hf| = 1686
 |Vol|= 2

W7.0

VALIDITY : [4]
CLOSED : [1]
TRIANGLES: [1]
ALLOCATED: [191.828 Kb]

 |V| = 911
 |F| = 1818
 |He| = 5454

VALIDITY : [OK]
2-MANIFOLD: [1]
ALLOCATED : [478.598 Kb]

 |V| = 555
 |F| = 839
 |He| = 2784
 |E| = 1392
 |Hf| = 1678
 |Vol|= 2

W7.1

VALIDITY : [4]
CLOSED : [1]
TRIANGLES: [1]
ALLOCATED: [336.953 Kb]

 |V| = 1599
 |F| = 3194
 |He| = 9582

VALIDITY : [OK]
2-MANIFOLD: [1]
ALLOCATED : [960.781 Kb]

 |V| = 1120
 |F| = 1676
 |He| = 5588
 |E| = 2794
 |Hf| = 3352
 |Vol|= 2

Test File : wafer8.wss Number of segments: 3

W8

VALIDITY : [4]
CLOSED : [1]
TRIANGLES: [1]
ALLOCATED: [307 Kb]

 |V| = 1457
 |F| = 2910
 |He| = 8730

VALIDITY : [OK]
2-MANIFOLD: [1]
ALLOCATED : [715.031 Kb]

 |V| = 758
 |F| = 1337
 |He| = 4186
 |E| = 2093
 |Hf| = 2674
 |Vol|= 2

W8.0

VALIDITY : [4]
CLOSED : [1]
TRIANGLES: [1]
ALLOCATED: [393.484 Kb]

 |V| = 1867
 |F| = 3730
 |He| = 11190

VALIDITY : [OK]
2-MANIFOLD: [1]
ALLOCATED : [17.4531 Kb]

 |V| = 32
 |F| = 18
 |He| = 96
 |E| = 48
 |Hf| = 36
 |Vol|= 2

 124

W8.1

VALIDITY : [4]
CLOSED : [1]
TRIANGLES: [1]
ALLOCATED: [677.641 Kb]

 |V| = 3203
 |F| = 6426
 |He| = 19278

VALIDITY : [OK]
2-MANIFOLD: [1]
ALLOCATED : [1369.74 Kb]

 |V| = 1554
 |F| = 2430
 |He| = 7988
 |E| = 3994
 |Hf| = 4860
 |Vol|= 2

W8.2

VALIDITY : [4]
CLOSED : [1]
TRIANGLES: [1]
ALLOCATED: [547.047 Kb]

 |V| = 2595
 |F| = 5186
 |He| = 15558

VALIDITY : [OK]
2-MANIFOLD: [1]
ALLOCATED : [2071.4 Kb]

 |V| = 2286
 |F| = 3764
 |He| = 12096
 |E| = 6048
 |Hf| = 7528
 |Vol|= 2

Test File : wafer9.wss Number of segments: 3

W9

VALIDITY : [4]
CLOSED : [1]
TRIANGLES: [1]
ALLOCATED: [1145.05 Kb]

 |V| = 5430
 |F| = 10856
 |He| = 32568

VALIDITY : [OK]
2-MANIFOLD: [1]
ALLOCATED : [475.125 Kb]

 |V| = 534
 |F| = 853
 |He| = 2770
 |E| = 1385
 |Hf| = 1706
 |Vol|= 2

W9.0

VALIDITY : [4]
CLOSED : [1]
TRIANGLES: [1]
ALLOCATED: [1315.7 Kb]

 |V| = 6239
 |F| = 12474
 |He| = 37422

VALIDITY : [OK]
2-MANIFOLD: [1]
ALLOCATED : [1277.55 Kb]

 |V| = 1382
 |F| = 2355
 |He| = 7470
 |E| = 3735
 |Hf| = 4710
 |Vol|= 2

W9.1

VALIDITY : [4]
CLOSED : [1]
TRIANGLES: [1]
ALLOCATED: [529.328 Kb]

 |V| = 2511
 |F| = 5018
 |He| = 15054

VALIDITY : [OK]
2-MANIFOLD: [1]
ALLOCATED : [1659.23 Kb]

 |V| = 1850
 |F| = 2993
 |He| = 9682
 |E| = 4841
 |Hf| = 5986
 |Vol|= 2

W9.2

VALIDITY : [4]
CLOSED : [1]
TRIANGLES: [1]
ALLOCATED: [297.93 Kb]

 |V| = 1414
 |F| = 2824
 |He| = 8472

VALIDITY : [OK]
2-MANIFOLD: [1]
ALLOCATED : [856.812 Kb]

 |V| = 1002
 |F| = 1491
 |He| = 4982
 |E| = 2491
 |Hf| = 2982
 |Vol|= 2

 125

As shown in the above table, surface structure is modified after the
conversion of Polyhedron into Nef-Polyhedron. During the simplification of
the coplanar faces, some of vertices and facets were removed. After this
conversion, W3 and W5 were not 2-manifold anymore. This exceptional
situation is results from the native representation of the Nef-polyhedra.
When a facet a lies on another facet A and not adjacent with any other
facet, then the facet a is interpreted as inner cycle of the facet A. This inner
cycle forms a hole on the facet as a result of the eliminated triangulation
information during the simplification phase. Fig. 4.1 shows the facets and
holes on the W3 and W5 surfaces. It is possible to apply Boolean Set
Operations on this kind of surfaces, however it is not possible to convert
them back into the polyhedrons again.

The following table gives the percentage of the simplification on different
surfaces.

Number of
Points

Number of
facets Surface

POLY NEF

Simplification
(%)

POLY NEF

Simplification
(%)

W0 53 8 84.91 102 6 94.12
W0.0 28 8 71.43 52 6 88.46
W0.1 29 8 72.41 54 6 88.89
W0.2 30 8 73.33 56 6 89.29

W1 30 30 0.00 56 36 35.71
W2 48 16 66.67 92 10 89.13
W3 40 20 50.00 76 18 76.32
W4 76 16 78.95 148 10 93.24
W5 57 16 71.93 114 10 91.23
W6 46 16 65.22 88 10 88.64

W6.0 38 8 78.95 72 6 91.67
W6.1 16 8 50.00 28 6 78.57

W7 870 573 34.14 1736 843 51.44
W7.0 911 555 39.08 1818 839 53.85
W7.1 1599 1120 29.96 3194 1676 47.53

W8 1457 758 47.98 2910 1337 54.05

Fig 4.1. The holes on the facets after conversion.

 126

W8.0 1867 32 98.29 3730 18 99.52
W8.1 3203 1554 51.48 6426 2430 62.18
W8.2 2595 2286 11.91 5186 3764 27.42

W9 5430 534 90.17 10856 853 92.14
W9.0 6239 1382 77.85 12474 2355 81.12
W9.1 2511 1850 26.32 5018 2993 40.35
W9.2 1414 1002 29.14 2824 1491 47.20

All methods of our modules were tested on all ten different WSS data files.
In these tests, we looked at time and resources required for the module
methods. These tests were realized using the routines of the CGAL support
library. CGAL provides two different modules for this kind of tests:
CGAL::Timer and CGAL::Memory_sizer.

The class CGAL::Timer is a timer class for measuring user process time. A
timer t of type CGAL::Timer is an object with a state. It is either running
or it is stopped. The state is controlled with t.start() and t.stop(). The
method t.time() gives the user process time in seconds.

The class CGAL::Memory_sizer allows measuring the memory size used by
the process. Both the virtual memory size and the resident size are available
(the resident size does not account for swapped out memory nor for the
memory which is not yet paged-in). The resident size used here.

With the help of these classes, our modules are tested in four different
phases: Extractions, Conversions, Creating Polyhedrons and Creating NEF-
Polyhedrons.

Extractions

WSS data file
Instantiation

Extractor::
extract()

Extractor::
buildOFF() Surface

time [sec] space [Kb] time [sec] space [Kb] time [sec] space [Kb]
W0 0.147 1064 0.007 24 0.001 0

W0.0 0.083 1064 0.005 24 0.001 0
W0.1 0.087 1064 0.002 24 0.001 0
W0.2 0.087 1064 0.004 24 0.001 0

W1 0.041 980 0.005 24 0.001 0
W2 0.060 1024 0.007 24 0.001 0
W3 0.066 1036 0.006 24 0.001 0
W4 0.107 1144 0.012 24 0.001 0
W5 0.081 1068 0.009 24 0.001 0
W6 1.591 4184 0.009 20 0.001 0

W6.0 1.595 4184 0.007 20 0.001 0

 127

W6.1 1.592 4184 0.002 20 0.002 0
W7 2.931 6316 0.470 32 0.013 0

W7.0 2.931 6316 0.503 28 0.012 0
W7.1 3.002 6316 1.360 56 0.020 0

W8 9.704 16244 1.285 148 0.020 0
W8.0 9.568 16244 1.970 84 0.023 0
W8.1 9.315 16244 4.968 344 0.043 0
W8.2 9.318 16244 3.386 252 0.036 0

W9 13.592 22084 16.227 1140 0.065 4
W9.0 13.727 22084 22.097 1052 0.079 4
W9.1 13.665 22084 3.126 240 0.036 4
W9.2 13.498 22084 1.087 84 0.022 4

Conversions

Creator::convertNEF() Creator::convertPOLY() Surface
time [sec] space [Kb] time [sec] space [Kb]

W0 0.320 948 0.003 124
W0.0 0.101 768 0.003 124
W0.1 0.103 776 0.002 124
W0.2 0.106 780 0.002 124

W1 0.131 788 0.005 128
W2 0.182 928 0.002 124
W3 0.160 840 N/A 0
W4 0.292 1196 0.004 124
W5 0.216 1008 N/A 0
W6 0.187 908 0.004 124

W6.0 0.146 824 0.002 124
W6.1 0.066 660 0.004 124

W7 4.218 6660 0.175 468
W7.0 4.313 7208 0.132 464
W7.1 8.060 11848 0.350 816

W8 6.951 10716 0.230 588
W8.0 8.497 13328 0.005 124
W8.1 16.526 23380 0.419 1096
W8.2 14.592 18928 0.534 1568

W9 22.558 37192 0.175 464
W9.0 27.668 42528 0.350 1036
W9.1 13.216 18164 0.479 1228
W9.2 7.011 10476 0.237 744

 128

Creating Polyhedrons

Creator::
buildPOLY()

Creator::
OFFtoPOLY() Surface

time [sec] space [Kb] time [sec] space [Kb]
W0 0.003 124 0.009 280

W0.0 0.002 108 0.005 264
W0.1 0.001 112 0.006 268
W0.2 0.001 112 0.002 268

W1 0.002 116 0.003 268
W2 0.002 124 0.004 276
W3 0.002 116 0.003 272
W4 0.004 136 0.006 304
W5 0.003 136 0.004 292
W6 0.003 112 0.003 276

W6.0 0.003 112 0.003 268
W6.1 0.003 104 0.002 260

W7 0.038 392 0.060 888
W7.0 0.044 408 0.062 916
W7.1 0.076 748 0.111 1316

W8 0.066 768 0.098 1224
W8.0 0.082 888 0.128 1480
W8.1 0.140 1432 0.222 2264
W8.2 0.117 1224 0.177 1944

W9 0.257 2320 0.374 3680
W9.0 0.282 2692 0.430 4188
W9.1 0.113 1188 0.176 1888
W9.2 0.064 684 0.098 1196

Creating NEF-Polyhedrons
Creator::

buildNEF()
Creator::

OFFtoNEF()
Creator::

NEF3toNEF() Surface
time [sec] space [Kb] time [sec] space [Kb] time [sec] space [Kb]

W0 0.323 1072 0.329 1228 0.023 288
W0.0 0.103 876 0.106 1032 0.021 288
W0.1 0.104 888 0.109 1044 0.024 292
W0.2 0.107 892 0.108 1048 0.023 292

W1 0.133 904 0.134 1056 0.090 396
W2 0.184 1052 0.186 1204 0.020 320
W3 0.162 956 0.163 1112 0.028 340
W4 0.296 1332 0.298 1500 0.019 316
W5 0.219 1144 0.220 1300 0.020 324

 129

W6 0.190 1020 0.190 1184 0.023 324
W6.0 0.149 936 0.149 1092 0.010 288
W6.1 0.069 764 0.068 920 0.009 292

W7 4.256 7052 4.278 7548 1.276 2924
W7.0 4.357 7616 4.375 8124 1.236 2908
W7.1 8.136 12596 8.171 13164 2.663 5540

W8 7.017 11484 7.049 11940 1.853 4132
W8.0 8.579 14216 8.625 14808 0.048 364
W8.1 16.665 24812 16.747 25644 3.784 7612
W8.2 14.709 20152 14.769 20872 5.965 11572

W9 22.815 39512 22.932 40872 1.244 2896
W9.0 27.950 45220 28.098 46716 3.437 7176
W9.1 13.329 19352 13.392 20052 4.462 9072
W9.2 7.075 11160 7.109 11672 2.172 4792

To test Boolean set operations, we used the objects W0, W1, W7 and W8.
Three different Boolean Set Operations were applied on these objects. The
first operation (#1) was a simple one, which was applied on W0 and W1. The
second operation (#2) was applied on W7 and W8. The last operation (#3)
was applied on the segments W7.1 and W8.2. The results are shown in the
following three pages. The tables below show the process times and the
memory sizes used by these Boolean set operations.

Process time [sec] Boolean Set Operation
#1 #2 #3

Intersection 0.302 7.905 19.030
Union 0.301 8.908 26.904
Difference (symm) 0.354 11.960 31.776
Difference (N1-N2) 0.269 5.398 18.037
Difference (N2-N1) 0.278 11.869 27.976

Used space[Kb] Boolean Set Operation

#1 #2 #3
Intersection 212 744 3472
Union 100 1752 12332
Difference (symm) 236 5424 12484
Difference (N1-N2) 172 16 260
Difference (N2-N1) 120 3636 7776

 130

Boolean Set Operation # 1

RESULT OF OPERATION CONVERTED POLYHEDRON Bool.

Op. view(NP) checkOut(NP) view(P) CheckOut(P)

W0*W1

VALIDITY : [OK]
2-MANIFOLD: [1]
ALLOCATED : [21.4141 Kb]
 |V| = 34
 |F| = 28
 |He| = 120
 |E| = 60
 |Hf| = 56
 |Vol|= 2

VALIDITY : [4]
CLOSED : [1]
TRIANGLES: [0]
ALLOCATED: [4.30469 Kb]
 |V| = 34
 |F| = 28
 |He| = 120

W0+W1

VALIDITY : [OK]
2-MANIFOLD: [1]
ALLOCATED : [31.4375 Kb]
 |V| = 52
 |F| = 38
 |He| = 176
 |E| = 88
 |Hf| = 76
 |Vol|= 2

VALIDITY : [4]
CLOSED : [1]
TRIANGLES: [0]
ALLOCATED: [6.27344 Kb]
 |V| = 52
 |F| = 38
 |He| = 176

W0^W1

VALIDITY : [OK]
2-MANIFOLD: [0]
ALLOCATED : [50.125 Kb]
 |V| = 62
 |F| = 66
 |He| = 248
 |E| = 124
 |Hf| = 132
 |Vol|= 4

EMPTY POLYHEDRON

W0-W1

VALIDITY : [OK]
2-MANIFOLD: [1]
ALLOCATED : [25.7266 Kb]
 |V| = 42
 |F| = 32
 |He| = 144
 |E| = 72
 |Hf| = 64
 |Vol|= 2

VALIDITY : [4]
CLOSED : [1]
TRIANGLES: [0]
ALLOCATED: [5.14844 Kb]
 |V| = 42
 |F| = 32
 |He| = 144

W1-W0

VALIDITY : [OK]
2-MANIFOLD: [1]
ALLOCATED : [27.125 Kb]
 |V| = 44
 |F| = 34
 |He| = 152
 |E| = 76
 |Hf| = 68
 |Vol|= 2

VALIDITY : [4]
CLOSED : [1]
TRIANGLES: [0]
ALLOCATED: [5.42969 Kb]
 |V| = 44
 |F| = 34
 |He| = 152

 131

Boolean Set Operation # 2

RESULT OF OPERATION CONVERTED POLYHEDRON Bool.

Op. view(NP) checkOut(NP) view(P) CheckOut(P)

W7*W8

VALIDITY : [OK]
2-MANIFOLD: [1]
ALLOCATED : [511.988 Kb]
 |V| = 611
 |F| = 877
 |He| = 2972
 |E| = 1486
 |Hf| = 1754
 |Vol|= 2

VALIDITY : [4]
CLOSED : [1]
TRIANGLES: [0]
ALLOCATED: [104.57 Kb]
 |V| = 611
 |F| = 877
 |He| = 2972

W7+W8

VALIDITY : [OK]
2-MANIFOLD: [1]
ALLOCATED : [718.852 Kb]
 |V| = 774
 |F| = 1330
 |He| = 4204
 |E| = 2102
 |Hf| = 2660
 |Vol|= 2

VALIDITY : [4]
CLOSED : [1]
TRIANGLES: [0]
ALLOCATED: [147.883 Kb]
 |V| = 774
 |F| = 1330
 |He| = 4204

W7^W8

VALIDITY : [OK]
2-MANIFOLD: [0]
ALLOCATED : [1226.53 Kb]
 |V| = 1356
 |F| = 2204
 |He| = 7116
 |E| = 3558
 |Hf| = 4408
 |Vol|= 3

EMPTY POLYHEDRON

W7-W8

VALIDITY : [OK]
2-MANIFOLD: [1]
ALLOCATED : [25.4922 Kb]
 |V| = 38
 |F| = 36
 |He| = 144
 |E| = 72
 |Hf| = 72
 |Vol|= 2

VALIDITY : [4]
CLOSED : [1]
TRIANGLES: [0]
ALLOCATED: [5.14844 Kb]
 |V| = 38
 |F| = 36
 |He| = 144

W8-W7

VALIDITY : [OK]
2-MANIFOLD: [1]
ALLOCATED : [1204.13 Kb]
 |V| = 1345
 |F| = 2168
 |He| = 7026
 |E| = 3513
 |Hf| = 4336
 |Vol|= 2

VALIDITY : [4]
CLOSED : [1]
TRIANGLES: [0]
ALLOCATED: [247.062 Kb]
 |V| = 1345
 |F| = 2168
 |He| = 7026

 132

Boolean Set Operation # 3

RESULT OF OPERATION CONVERTED POLYHEDRON Bool.

Op. view(NP) checkOut(NP) view(P) CheckOut(P)

W7.1*W8.2

VALIDITY : [OK]
2-MANIFOLD: [1]
ALLOCATED : [1048.36 Kb]
 |V| = 1341
 |F| = 1688
 |He| = 6054
 |E| = 3027
 |Hf| = 3376
 |Vol|= 2

VALIDITY : [4]
CLOSED : [1]
TRIANGLES: [0]
ALLOCATED: [212.922 Kb]
 |V| = 1341
 |F| = 1688
 |He| = 6054

W7.1+W8.2

VALIDITY : [OK]
2-MANIFOLD: [0]
ALLOCATED : [2403.24 Kb]
 |V| = 2842
 |F| = 4143
 |He| = 13964
 |E| = 6982
 |Hf| = 8286
 |Vol|= 2

EMPTY POLYHEDRON

W7.1^W8.2

VALIDITY : [OK]
2-MANIFOLD: [0]
ALLOCATED : [3407.65 Kb]
 |V| = 3792
 |F| = 5833
 |He| = 19244
 |E| = 9622
 |Hf| = 11666
 |Vol|= 5

EMPTY POLYHEDRON

W7.1-W8.2

VALIDITY : [OK]
2-MANIFOLD: [1]
ALLOCATED : [869.098 Kb]
 |V| = 1143
 |F| = 1364
 |He| = 5006
 |E| = 2503
 |Hf| = 2728
 |Vol|= 3

VALIDITY : [4]
CLOSED : [1]
TRIANGLES: [0]
ALLOCATED: [176.109 Kb]
 |V| = 1143
 |F| = 1364
 |He| = 5006

W8.2-W7.1

VALIDITY : [OK]
2-MANIFOLD: [1]
ALLOCATED : [2582.95 Kb]
 |V| = 3040
 |F| = 4469
 |He| = 15014
 |E| = 7507
 |Hf| = 8938
 |Vol|= 3

VALIDITY : [4]
CLOSED : [1]
TRIANGLES: [0]
ALLOCATED: [527.922 Kb]
 |V| = 3040
 |F| = 4469
 |He| = 15014

 133

The results of the Boolean Set Operation #1 were used for creating example
OFF files. The following OFF files were created with the help of the module
Outer.

intersection.OFF (W0 * W1)

OFF
34 28 0
#points
1.2169 3.0868 2.1982
1.2458 0.7891 2.0247
1.5 0.2492 0.5
1.5 2.0035 0.5
1.5 3.8527 0.5
2.5 0.1984 0.5
2.5 1.7466 0.5
2.5 3.7752 0.5
2.7574 0.7291 2.0448
2.7832 3.0247 2.1996
1.08327 0 3
2.91659 0 3
1.08329 4 3
2.91659 4 3
1.15212 0 2.58687
1.26825 0 1.89018
1.45944 0 0.743315
1.5 0 0.5
2.5 0 0.5
2.53508 0 0.710535
2.73821 0 1.92964
2.86105 0 2.66671
1.10144 4 2.89112
1.2485 4 2.00875
1.47215 4 0.667072
1.5 4 0.5
2.5 4 0.5
2.53979 4 0.738841
2.75042 4 2.00294
2.90254 4 2.91568
1.08327 1.15432 3
1.08328 2.43268 3
2.9166 1.11766 3
2.9166 2.40689 3

#facets
3 0 4 3
4 0 23 24 4
3 22 23 0
4 31 12 22 0
4 30 31 0 1
3 0 3 1
3 1 3 2
10 17 2 3 4 25 26 7 6 5 18
3 24 25 4
10 12 13 29 28 27 26 25 24 23 22
8 30 10 11 32 33 13 12 31
4 30 1 14 10
3 14 1 15
4 1 2 16 15
3 16 2 17
10 10 14 15 16 17 18 19 20 21 11
3 18 5 19
4 5 8 20 19
3 5 6 8
3 6 9 8
3 6 7 9
4 7 27 28 9
3 7 26 27
3 28 29 9
4 9 29 13 33
4 8 9 33 32
4 8 32 11 21
3 20 8 21

union.OFF (W0+W1)

OFF
52 38 0
#points
0 0 0
0 0 3
0 4 0
0 4 3
4 0 0
4 0 3
4 4 0
4 4 3

#facets
4 0 2 6 4
4 0 1 3 2
14 0 4 5 29 39 38 37 36 35 34 33 32 28 1
4 4 6 7 5
14 2 3 30 40 41 42 43 44 45 46 47 31 7 6
6 1 28 48 49 30 3
5 11 48 28 32 13
4 13 32 33 15

 134

0.5 -1 6.5
0.5 2.009 6.5
0.5 5 6.5
0.9043 1.5565 4.074
0.975 5 3.6499
1.0334 -1 3.2993
1.2831 5 1.8013
1.2967 -1 1.7197
1.5 -1 0.5
1.5 5 0.5
2.5 -1 0.5
2.5 5 0.5
2.7119 -1 1.7717
2.7168 5 1.8013
3.0032 -1 3.5197
3.0249 5 3.6499
3.0989 1.5626 4.0938
3.5 -1 6.5
3.5 2.009 6.5
3.5 5 6.5
1.08327 0 3
2.91659 0 3
1.08329 4 3
2.91659 4 3
1.15212 0 2.58687
1.26825 0 1.89018
1.45944 0 0.743315
1.5 0 0.5
2.5 0 0.5
2.53508 0 0.710535
2.73821 0 1.92964
2.86105 0 2.66671
1.10144 4 2.89112
1.2485 4 2.00875
1.47215 4 0.667072
1.5 4 0.5
2.5 4 0.5
2.53979 4 0.738841
2.75042 4 2.00294
2.90254 4 2.91568
1.08327 1.15432 3
1.08328 2.43268 3
2.9166 1.11766 3
2.9166 2.40689 3

3 33 34 15
4 15 34 35 16
4 16 35 36 18
4 18 36 37 20
3 37 38 20
4 20 38 39 22
5 39 29 50 24 22
6 31 51 50 29 5 7
5 47 23 24 51 31
4 21 23 47 46
3 45 21 46
4 44 19 21 45
4 43 17 19 44
4 14 17 43 42
3 41 14 42
4 12 14 41 40
5 11 12 40 30 49
3 11 49 48
3 9 12 11
3 8 9 11
3 8 11 13
8 8 13 15 16 18 20 22 25
3 22 24 25
3 24 26 25
3 23 26 24
3 50 51 24
3 23 27 26
8 10 27 23 21 19 17 14 12
3 9 10 12
6 8 25 26 27 10 9

difference0_1.OFF (W0-W1)

OFF
42 32 0
#points
0 0 0
0 0 3
0 4 0
0 4 3
4 0 0
4 0 3
4 4 0
4 4 3
1.2169 3.0868 2.1982
1.2458 0.7891 2.0247
1.5 0.2492 0.5
1.5 2.0035 0.5
1.5 3.8527 0.5
2.5 0.1984 0.5

#facets
4 0 2 6 4
4 0 1 3 2
14 0 4 5 19 29 28 27 26 25 24 23 22 18 1
4 4 6 7 5
14 2 3 20 30 31 32 33 34 35 36 37 21 7 6
6 1 18 38 39 20 3
4 38 18 22 9
3 22 23 9
4 9 23 24 10
3 24 25 10
10 25 26 13 14 15 34 33 12 11 10
3 26 27 13
4 13 27 28 16
3 28 29 16

 135

2.5 1.7466 0.5
2.5 3.7752 0.5
2.7574 0.7291 2.0448
2.7832 3.0247 2.1996
1.08327 0 3
2.91659 0 3
1.08329 4 3
2.91659 4 3
1.15212 0 2.58687
1.26825 0 1.89018
1.45944 0 0.743315
1.5 0 0.5
2.5 0 0.5
2.53508 0 0.710535
2.73821 0 1.92964
2.86105 0 2.66671
1.10144 4 2.89112
1.2485 4 2.00875
1.47215 4 0.667072
1.5 4 0.5
2.5 4 0.5
2.53979 4 0.738841
2.75042 4 2.00294
2.90254 4 2.91568
1.08327 1.15432 3
1.08328 2.43268 3
2.9166 1.11766 3
2.9166 2.40689 3

4 16 29 19 40
6 21 41 40 19 5 7
4 17 41 21 37
3 36 17 37
4 15 17 36 35
3 15 35 34
3 32 12 33
4 8 12 32 31
3 30 8 31
4 39 8 30 20
4 38 9 8 39
3 9 10 11
3 8 9 11
3 8 11 12
3 14 17 15
3 14 16 17
3 13 16 14
4 16 40 41 17

difference1_0.OFF (W1-W0)

OFF
44 34 0
#points
0.5 -1 6.5
0.5 2.009 6.5
0.5 5 6.5
0.9043 1.5565 4.074
0.975 5 3.6499
1.0334 -1 3.2993
1.2831 5 1.8013
1.2967 -1 1.7197
1.5 -1 0.5
1.5 5 0.5
2.5 -1 0.5
2.5 5 0.5
2.7119 -1 1.7717
2.7168 5 1.8013
3.0032 -1 3.5197
3.0249 5 3.6499
3.0989 1.5626 4.0938
3.5 -1 6.5
3.5 2.009 6.5
3.5 5 6.5
1.15212 0 2.58687
1.26825 0 1.89018
1.45944 0 0.743315
1.5 0 0.5
2.5 0 0.5
2.53508 0 0.710535
2.73821 0 1.92964
2.86105 0 2.66671
1.10144 4 2.89112
1.2485 4 2.00875

#facets
6 0 17 18 19 2 1
8 0 5 7 8 10 12 14 17
3 0 3 5
3 0 1 3
3 1 4 3
3 1 2 4
8 2 19 15 13 11 9 6 4
3 15 19 18
3 15 18 16
3 16 18 17
3 14 16 17
5 27 41 38 16 14
4 12 26 27 14
3 25 26 12
4 10 24 25 12
4 8 23 24 10
4 7 22 23 8
3 21 22 7
4 5 20 21 7
5 3 36 40 20 5
3 3 37 36
5 3 4 28 42 37
4 4 6 29 28
4 6 9 31 30
3 29 6 30
4 31 9 11 32
4 32 11 13 33
3 33 13 34
4 13 15 35 34
5 35 15 16 39 43

 136

1.47215 4 0.667072
1.5 4 0.5
2.5 4 0.5
2.53979 4 0.738841
2.75042 4 2.00294
2.90254 4 2.91568
1.08327 1.15432 3
1.08328 2.43268 3
2.9166 1.11766 3
2.9166 2.40689 3
1.08327 0 3
2.91659 0 3
1.08329 4 3
2.91659 4 3

3 38 39 16
10 40 41 27 26 25 24 23 22 21 20
8 36 37 42 43 39 38 41 40
10 42 28 29 30 31 32 33 34 35 43

The module Outer can produce outputs in different file
formats. In order to give a general idea about the
structure of these file formats, the simplest segment
W6.1 was used. In order to reduce further the number of
facets/vertices, in the first step, a Nef-polyhedron was
created from W6.1. In the second step, this Nef-
polyhedron was converted back into a Polyhedron.
Thereafter, the following outputs were created with the
methods of Outer.

Object file format Example.OFF

OFF
8 6 0

0.8 0 1
0.8 0 1.5
0.8 2 1
0.8 2 1.5
1.2 0 1
1.2 0 1.5
1.2 2 1
1.2 2 1.5
4 0 4 5 1
4 0 2 6 4
4 0 1 3 2
4 1 5 7 3
4 4 6 7 5
4 2 3 7 6

Open Inventor file format Example.IV

#Inventor V2.0 ascii
File written with the help of the CGAL Library
8 vertices
24 halfedges
6 facets

Separator {
 Coordinate3 {
 point [

 137

 0.8 0 1,
 0.8 0 1.5,
 0.8 2 1,
 0.8 2 1.5,
 1.2 0 1,
 1.2 0 1.5,
 1.2 2 1,
 1.2 2 1.5,
] #point
 } #Coordinate3
 # 6 facets
 IndexedFaceSet {
 coordIndex [
 0,4,5,1,-1,
 0,2,6,4,-1,
 0,1,3,2,-1,
 1,5,7,3,-1,
 4,6,7,5,-1,
 2,3,7,6,-1,
] #coordIndex
 } #IndexedFaceSet

} #Separator

Wavefront object file format Example.OBJ

file written from a CGAL tool in Wavefront obj format
8 vertices
24 halfedges
6 facets

8 vertices
--

v 0.8 0 1
v 0.8 0 1.5
v 0.8 2 1
v 0.8 2 1.5
v 1.2 0 1
v 1.2 0 1.5
v 1.2 2 1
v 1.2 2 1.5

6 facets
--

f 1 5 6 2
f 1 3 7 5
f 1 2 4 3
f 2 6 8 4
f 5 7 8 6
f 3 4 8 7

End of Wavefront obj format #

VRML file format v.1.0 Example.VRML1

#VRML V1.0 ascii
File written with the help of the CGAL Library
8 vertices

 138

24 halfedges
6 facets

Separator {
 Coordinate3 {
 point [
 0.8 0 1,
 0.8 0 1.5,
 0.8 2 1,
 0.8 2 1.5,
 1.2 0 1,
 1.2 0 1.5,
 1.2 2 1,
 1.2 2 1.5,
] #point
 } #Coordinate3
 # 6 facets
 IndexedFaceSet {
 coordIndex [
 0,4,5,1,-1,
 0,2,6,4,-1,
 0,1,3,2,-1,
 1,5,7,3,-1,
 4,6,7,5,-1,
 2,3,7,6,-1,
] #coordIndex
 } #IndexedFaceSet
} #Separator

VRML file format v.2.0 Example.VRML2

#VRML V2.0 utf8
File written with the help of the CGAL Library
#-- Begin of file header
Group {
 children [
 Shape {
 appearance DEF A1 Appearance {
 material Material {
 diffuseColor .6 .5 .9
 }
 }
 appearance
 Appearance {
 material DEF Material Material {}
 }
 geometry NULL
 }
 #-- End of file header
 #-- Begin of Polyhedron_3
 # 8 vertices
 # 24 halfedges
 # 6 facets
 Group {
 children [
 Shape {
 appearance Appearance { material USE Material }
 geometry IndexedFaceSet {
 convex FALSE
 solid FALSE
 coord Coordinate {
 point [

 139

 0.8 0 1,
 0.8 0 1.5,
 0.8 2 1,
 0.8 2 1.5,
 1.2 0 1,
 1.2 0 1.5,
 1.2 2 1,
 1.2 2 1.5,
] #point
 } #coord Coordinate
 coordIndex [
 0,4,5,1,-1,
 0,2,6,4,-1,
 0,1,3,2,-1,
 1,5,7,3,-1,
 4,6,7,5,-1,
 2,3,7,6,-1,
] #coordIndex
 } #geometry
 } #Shape
] #children
 } #Group

 140

Chapter 5

Conclusion

Nothing exists except atoms and empty space; everything else is opinion.

Democritus

 141

Chapter 5

5. Conclusion
Boolean set operations are generally used in in the field solid modelling for
obtaining complex objects from simple ones. Boolean set operations are
necessary also in the micro-fabrication simulations. The Computational
Geometry Algorithms Library (CGAL) offers some features for creating 3D
solid surfaces as well as applying Boolean set operations on them. In this
study, a programmer interface was defined for applying Boolean set
operations on the WSS data files containing information about micro-
fabrication simulations. This programmer interface utilizes the features of
CGAL for the necessary Boolean set operations.

For representing three-dimensional polyhedral structures, the algorithm
library of CGAL offers two different classes: CGAL::Polyhedron_3 and
CGAL::Nef_Polyhedron_3.

The CGAL::Polyhedron_3 is relatively old and therefore a well-
integrated class of CGAL. This class offers more possibilities for
inputs/outputs and has a variety of different constructors for creating
objects. However, the Boolean set operations cannot be applied on the
CGAL::Polyhedron_3 objects. The CGAL::Nef_Polyhedron_3 is the
only class in CGAL which allows Boolean set operations. A
CGAL::Nef_polyhedron_3 object can be obtained directly from a
CGAL::Polyhedron_3 object.

As a result, some conversions are necessary in both directions. Different
native properties of these two classes affect the necessary conversions. The
following results have key importance, which need to be mentioned again:

1. The CGAL::Polyhedron_3 can also represent open surfaces, which do

not properly define a volume. However, this kind of
CGAL::Polyhedron_3 objects are excluded from the conversion into
CGAL:: Nef_polyhedron_3. Therefore, a CGAL::Polyhedron_3
object is convertible into CGAL:: Nef_polyhedron_3, only if it is
closed.

2. The results of the Boolean set operations can also have non-manifold

situations. However, since the CGAL::Nef_polyhedron_3 can also
model non-manifold solids, this does not cause any problems.
Unfortunately, non-manifold surfaces are not offered by

 142

CGAL::Polyhedron_3. Therefore, CGAL::Nef_polyhedron_3 object
is convertible into a CGAL::Polyhedron_3 object, only if it is 2-
manifold.

These properties and limitations are discussed in detail in section 3.3.2
(implementation details of the module Creator). The results of this study can
be summed up as follows:

1. Incremental Builder is a useful mechanism in creating polyhedral

structures in a fast manner. This mechanism offers also great debug
possibilities for object creations.

2. Since WSS data file instantiation is a time and space consuming process,

it is more efficient to use the external OFF files for creating objects.

3. Using native NEF3 files is the fastest way of creating a NEF polyhedron

(Please note that NEF3 files are readable via streams if and only if they
are written already in the same kernel representation).

4. NEF-Polyhedron has a native topological structure. During the

conversion of triangulated objects into NEF-Polyhedrons, the coplanar
faces on the surfaces are simplified. This surface modification is
irreversible.

5. The 2-manifold results of the Boolean set operations are convertible into

Polyhedrons. However, the surfaces of these Polyhedrons consist of
polygons instead of triangles. CGAL does currently not offer the
possibility of re-triangulating the polyhedron surfaces.

6. The results of Boolean set operations can have non-manifold boundaries.

Since other tools generally cannot interpret them, this kind of results is
not useful.

7. Boolean set operations are also applicable on rather complex objects. As

the number of facets in WSS data files increase, application of Boolean
set operations becomes rather time-consuming. Symmetric difference
returns more non-manifold results. It is also a time and space consuming
process. Therefore, it should be preferred only when necessary.

8. The class CGAL::Nef_polyhedron_3 has some limitations, and it

cannot be used with all allowed kernel representations. This class
requires exact integer kernels. Therefore, the constructions with small
double coordinates cause some problems in the surface simplification
phase.

 143

9. There are some exceptional situations on object surfaces (such as W3 and
W5, see page 121, fig 4.1).

As discussed in previous chapters, Boolean set operations and the class
CGAL::Nef_polyhedron_3, are quite new in the CGAL algorithm library.
In other words, they are not yet fully integrated into this library. As the
above results suggest, these new parts require quite a number of
preconditions and exceptions.

Despite these limitations and exceptions, our implementation can easily
apply Boolean set operations on the created objects. The module Extractor
offers the possibility of bringing the simulation data into CGAL. The module
Creator offers several ways of creating three-dimensional objects based on
the simulation data. The modules Checker and Displayer are responsible for
debugging and displaying. After the operations, it is possible to take outputs
in different file formats with the module Outer. These outputs can be used
in other sessions and with different applications. The data flow between
different modules is optimized to work with small resources. Due to their
flexible designs, the modules can be used independently. The modules are
designed to be compatible with the future releases of CGAL, however, this
cannot be guaranteed. The interface has been tested using different WSS
files. The Chapter 4 summarizes the results and outputs of these tests.

In the course of development, we have consulted with the CGAL team
several times. These consultations have proved to be rather helpful in
overcoming many difficulties. Through these consultations, the team
became informed about our needs. The CGAL team plans new options and
possibilities for the next release.

This study gives a general overview about CGAL, which aims at giving an
overall idea about the structure and design of CGAL. It gives a detailed
description about using Boolean set operations in CGAL 3.1. It also
introduces related terms and topics. In this regard, we hope that this study
provides a quick-start for the future works with the next versions of CGAL.

 144

Chapter 6

Appendices

Give the public everything you can give them, keep the place as
clean as you can keep it, keep it friendly.

Walt Disney

 145

Chapter 6

6. Appendices

6.1 Source files

Extractor.h

class Extractor{

 Wafer_h wafer;
 Segment_h seg;
 Surface_hvh surf;

 int i,j,k;
 int wDim, nos,nop,nof;
 Face tri;
 K1::Point_3 Cp;

 // A function object which returns true if (point p) < (point q)
 template<class T>
 struct lessXYZ:public binary_function<T,T,bool> {
 bool operator() (const T& t1, const T& t2) const {
 return (CGAL::lexicographically_xyz_smaller(t1,t2));
 }
 };

 // private Methods
 void getSurface();
 int FindIndice(K1::Point_3 &aP);
 void SortPoints();

 public:

 Extractor(char *fname);
 ~Extractor(){};

 void extract();
 void extract(unsigned int segNum);
 void buildOFF(char *fname);
 int getNOS();
 int getDIM();

};

// Constructor
Extractor::Extractor(char* fname){

 Config_h cfg(new Config());
 Reader_h reader(new WssReader(cfg, fname));

 wafer = newWafer(reader, cfg);

 points.clear(); facets.clear();

 146

}

// Extracts wafer surface
void Extractor::extract() {

 surf = wafer ->getSurface();

 getSurface();

}

// Extracts segment surface
void Extractor::extract(unsigned int segNum) {

 seg = wafer->nextSegment(segNum);
 surf = seg ->getSurface();

 getSurface();

}

// Gives the number of segments
int Extractor::getNOS() {

 nos = wafer -> getNbSegments(); // Number of segments
 return (nos);
}

// Gives the dimension of wafer
int Extractor::getDIM() {

 wDim = wafer -> dim(); // Number of segments
 return (wDim);

}

// Receives the requested surface
void Extractor::getSurface() {

 Surface_hv::iterator hit;
 Surface_h aFace;
 unsigned int actPoi;
 Point Wp;

 cout << "Reading Points...\n";
 points.clear();

 for (hit = surf->begin(); hit != surf->end(); hit++) {
 aFace = *hit; actPoi = 0;
 for (i=0; i<3; i++) {
 Wp = *(aFace-> nextPoint(actPoi));
 Cp = K1::Point_3(Wp.x,Wp.y,Wp.z);
 if (std::find(points.begin(),points.end(),Cp)
 == points.end())
 { points.push_back(Cp); }
 }
 }

 SortPoints();

 cout << "Reading Facets...\n";
 facets.clear();

 147

 for (hit = surf->begin(); hit != surf->end(); hit++) {
 aFace=*hit; actPoi = 0; tri.clear();
 for (i=0; i<3; i++) {
 Wp = *(aFace-> nextPoint(actPoi));
 Cp = K1::Point_3(Wp.x,Wp.y,Wp.z);
 j = FindIndice(Cp);
 tri.push_back(j);
 }
 if (aFace->pointOrderOrientation())
 { reverse(tri.begin(),tri.end());}
 facets.push_back(tri);
 }

}

// Builds an OFF file from STL containers
void Extractor::buildOFF(char *fname) {

 int i,j, nov;

 K1::Point_3 Cp;

 ofstream out(fname);

 nop = points.size();
 nof = facets.size();

 CGAL::set_ascii_mode(out);
 out << "OFF" << endl;
 out << nop << ' ' << nof << " 0" << endl;

 for(i=0; i<nop; i++) {
 Cp = points[i];
 out << CGAL::to_double(Cp.x()) << " ";
 out << CGAL::to_double(Cp.y()) << " ";
 out << CGAL::to_double(Cp.z()) << "\n";
 }

// copy(points.begin(), points.end(),
 ostream_iterator<K1::Point_3>(out, "\n"));

 for (i=0; i<nof ;i++){
 tri = facets[i];
 nov = tri.size();
 out << nov;
 for (j=0; j<nov ;j++) out << ' ' << tri[j];
 out << endl;
 }

 out.close();

}

// Returns the indice of requested point in list points
int Extractor::FindIndice(K1::Point_3 &aP) {

 int l,r,mid, indice;

 l = 0; r = points.size();
 indice = -1;

 do {

 148

 mid = l + (r - l)/2;
 if (aP == points[mid]){indice=mid;}
 if (lexicographically_xyz_smaller(aP,points[mid]))
 {r = mid;} else {l = mid;}
 } while ((indice == -1) && (l!=r));

 return (indice);

}

// Sort the list points respect to order xyz.
void Extractor::SortPoints() {

 cout << "Sorting points...\n";
 std::sort(points.begin(),points.end(), lessXYZ<K1::Point_3>());

}

Creator.h

// A template for building a polyhedron with incremental builder.
template <class HDS>
class Builder:public CGAL::Modifier_base<HDS> {

 public:

 Builder(){}
 void operator()(HDS& hds) {

 std::cout << "Changing HDS...\n";

 int i;
 Face tri;
 K1::Point_3 Cp;

 int nop = points.size();
 int nof = facets.size();

 CGAL::Polyhedron_incremental_builder_3<HDS> PH(hds, xVerbose);

 PH.begin_surface(nop, nof, 0,0);

 for (i=0; i<nop; i++) {
 Cp = points[i];
 PH.add_vertex(Cp);
 }

 for (i=0; i<nof; i++) {
 tri=facets[i];
 PH.add_facet(tri.begin(), tri.end());
 }

 PH.end_surface();

 if (PH.check_unconnected_vertices())
 {PH.remove_unconnected_vertices();}

 }

};

// A function object to scaling points of a polyhedron

 149

K1::Point_3 scaleP(K1::Point_3& Cp) {
 return (CGAL::ORIGIN + ((Cp - CGAL::ORIGIN) * xScale));
}

// A function object to rescaling points of a polyhedron
K1::Point_3 reScaleP(K1::Point_3& Cp) {
 return (CGAL::ORIGIN + ((Cp - CGAL::ORIGIN) * xRescale));
}

class Creator{

 Polyhedron buildPolyhedron();
 Polyhedron scanPolyhedron(char *fname);
 Nef_polyhedron scanNEF(char *fname);
 bool isKernEQ();

 public:

 Creator(){};
 ~Creator(){};

 Polyhedron buildPOLY();
 Nef_polyhedron buildNEF();

 Polyhedron OFFtoPOLY(char *fname);
 Nef_polyhedron OFFtoNEF(char *fname);
 Nef_polyhedron NEF3toNEF(char *fname);

 Nef_polyhedron boolNEF(Nef_polyhedron& N1,
 Nef_polyhedron& N2, boolOP op);

 Polyhedron convertPOLY(Nef_polyhedron& NP, bool scaling=true);
 Nef_polyhedron convertNEF(Polyhedron& P, bool scaling=true);

};

// Returns true if K1==K2
bool Creator::isKernEQ(){

 Polyhedron P1;
 Polyhedron_K2 P2;

 CGAL::Object obj = make_object(P1);

 return (CGAL::assign(P2,obj));
}

// Scans a polyhedron from OFF files
Polyhedron Creator::scanPolyhedron(char *fname) {

 Polyhedron Px;

 std::ifstream in(fname);
 scan_OFF(in, Px, xVerbose);
 Px.normalize_border();

 return (Px);

}

 150

// Scans a Nef-polyhedron from NEF3 files
Nef_polyhedron Creator::scanNEF(char *fname){

 Nef_polyhedron NPx;
 std::ifstream in(fname);
 in >> NPx;

 return (NPx);

}

// Create a polyhedron with the template Builder
Polyhedron Creator::buildPolyhedron() {

 std::cout << "Building a Polyhedron with Incremental Builder...\n";
 Polyhedron Px;

 Builder<HalfedgeDS> PHDS;
 Px.delegate(PHDS);
 Px.normalize_border();

 return (Px);

}

// Converts a Polyhedron into Nef-Polyhedron (when closed)
Nef_polyhedron Creator::convertNEF(Polyhedron& Px, bool scaling) {

 Nef_polyhedron NPx;

 if (Px.is_closed()) {

 std::cout << "Building a NEF from created polyhedron...\n";

 if (scaling)
 std::transform(Px.points_begin(), Px.points_end(),
 Px.points_begin(), scaleP);

 Polyhedron_K2 Px2;
 Px2.clear();

 std::cout << "Converting Kernel K1->K2...\n";
 std::ofstream out("temp.OFF");out << Px;
 std::ifstream in ("temp.OFF");in >> Px2;

 Px2.normalize_border();
 NPx = Nef_polyhedron(Px2);
 }
 else {std::cout << "\nCreated Polyhedron is NOT closed!\n";}

 return (NPx);

}

// Converts a Nef-Polyhedron into Polyhedron (when 2-manifold)
Polyhedron Creator::convertPOLY(Nef_polyhedron& NPx, bool scaling) {

 Polyhedron Px;

 if (NPx.is_simple()) {
 std::cout << "\nConverting NEF to Polyhedron...\n";

 Polyhedron_K2 Px2;

 151

 Px2.clear();

 NPx.convert_to_Polyhedron(Px2);
 Px2.normalize_border();

 std::cout << "Converting Kernel K2->K1...\n";
 std::ofstream out("temp.OFF");out << Px2;
 std::ifstream in ("temp.OFF");in >> Px;

 Px.normalize_border();

 if (scaling)
 std::transform(Px.points_begin(), Px.points_end(),
 Px.points_begin(), reScaleP);

 } else {std::cout << "\nNEF Polyhedron is NOT simple!\n";}

 return (Px);

}

// returns back the result of requested boolean operation.
Nef_polyhedron Creator::boolNEF(Nef_polyhedron& N1,
 Nef_polyhedron& N2, boolOP op) {

 Nef_polyhedron NPx;
 std::cout << "BSO ->";

 switch(op){
 case INT : std::cout << "(N1*N2) Intersection:\n";
 NPx= N1*N2;
 break;
 case UNI : std::cout << "(N1+N2) Union:\n";
 NPx= N1+N2;
 break;
 case SYM : std::cout << "(N1^N2) Symmetric Difference:\n";
 NPx= N1^N2;
 break;
 case D12 : std::cout << "(N1-N2) Difference:\n";
 NPx= N1-N2;
 break;
 case D21 : std::cout << "(N2-N1) Difference:\n";
 NPx= N2-N1;
 break;
 default : std::cout << "\nPossible operations:
 INT, UNI, SYM, D12, D21\n";
 break;
 }

 return (NPx.regularization());
}

// Build a Polyhedron from STL containers
Polyhedron Creator::buildPOLY() {
 Polyhedron Px;
 Px = buildPolyhedron();
 return (Px);
}

// Build a NEF-Polyhedron from STL containers
Nef_polyhedron Creator::buildNEF() {
 Polyhedron Px;
 Px = buildPolyhedron();

 152

 Nef_polyhedron NPx;
 NPx = convertNEF(Px);
 return (NPx);
}

// Create a Polyhedron from OFF files
Polyhedron Creator::OFFtoPOLY(char *fname){
 Polyhedron Px;
 Px = scanPolyhedron(fname);
 return (Px);
}

// Create a Nef-Polyhedron from OFF files
Nef_polyhedron Creator::OFFtoNEF(char *fname){
 Polyhedron Px;
 Px = scanPolyhedron(fname);
 Nef_polyhedron NPx;
 NPx = convertNEF(Px);
 return (NPx);
}

// Create a Nef-Polyhedron from NEF3 files
Nef_polyhedron Creator::NEF3toNEF(char *fname){
 Nef_polyhedron NPx;
 NPx = scanNEF(fname);
 return (NPx);
}

Displayer.h

class Displayer{

 typedef CGAL::Geomview_stream GV_Stream;
 typedef CGAL::Qt_widget_Nef_3<Nef_polyhedron> QTNef;

 GV_Stream gv;

 public:
 Displayer();
 ~Displayer(){};

 void clear() { gv.clear(); }
 void view(Polyhedron& Px);
 void view(Nef_polyhedron& NPx);
 void view_POINTS();
 void view_FACETS();
 void view_OFF(char* fname);
};

// Constructor
Displayer::Displayer() {

 gv.set_bg_color(CGAL::BLACK);
 gv.set_vertex_color(CGAL::GREEN);
 gv.set_edge_color(CGAL::RED);

 gv.clear();

}

// Displays a Polyhedron in Geomview

 153

void Displayer::view(Polyhedron& Px) {

 gv.set_face_color(CGAL::Color(rand()+128,rand()+128,rand()+128));
 gv << Px;
 gv.look_recenter();

}

// Displays a Nef Polyhedron in QtWidget
void Displayer::view(Nef_polyhedron& NPx) {

 int arg1 = 1; char *arg2[] = {"NEF"};

 QApplication app(arg1,arg2);
 QTNef* widget = new QTNef(NPx);

 app.setMainWidget(widget);
 widget->show();
 std::cout << "\nPlease close NEF displayer to continue execution...\n";
 app.exec();
}

// displays the list points in geomview
void Displayer::view_POINTS(){

 int i;
 int nop = points.size();

 for (i=0; i<nop ;i++){
 gv << CGAL::RED << points[i];
 }
 gv.look_recenter();

}

// display list facets in geomview
void Displayer::view_FACETS(){

 int i;
 Face tri;
 int nof = facets.size();

 for (i=0; i<nof ;i++){
 tri = facets[i];
 gv.set_face_color(CGAL::Color(rand(),rand(),rand()));
 gv << K1::Triangle_3(points[tri[0]],points[tri[1]],points[tri[2]]);
 }
 gv.look_recenter();

}

// display an OFF file in geomview
void Displayer::view_OFF(char *fname) {

 Polyhedron Px;

 std::ifstream in(fname);
 scan_OFF(in, Px, xVerbose);
 Px.normalize_border();

 view(Px);
}

 154

Checker.h

class Checker {

 public:

 Checker() {};
 ~Checker() {};

 void checkOut(Polyhedron& Px, std::ostream& out = std::cout);
 void checkOut(Nef_polyhedron& NPx, std::ostream& out = std::cout);
 void check_FacetConsistency();

};

//Check a Polyhedron & Display results...
void Checker::checkOut(Polyhedron& Px, std::ostream& out) {

 out << "\n[Info_POLY]:\n----------------\n";

 if (Px.empty()) {out << "\nan EMPTY Polyhedron!\n";}
 else {

 int i;
 out << " VALIDITY : [";
 for (i=4; i>=0;i--)
 if (Px.is_valid(xVerbose,i)) {break;}
 out << i << "]\n";

 out << " CLOSED : [";
 if (Px.is_closed())
 { out << "1";}
 else { out << "0";}
 out << "]\n";

 out << " TRIANGLES: [";
 if (Px.is_pure_triangle())
 { out << "1";}
 else { out << "0";}
 out << "]\n";

 out << " ALLOCATED: ["<< Px.bytes() / 1024.0 << " Kb]\n";

 out << " |V| = " << Px.size_of_vertices() << "\n";
 out << " |F| = " << Px.size_of_facets() << "\n";
 out << " |He| = " << Px.size_of_halfedges() << "\n";

 }
 out << "----------------\n";

}

//Check a Nef Polyhedron & Display results...
void Checker::checkOut(Nef_polyhedron& NPx, std::ostream& out) {

 out << "\n[Info_NEF]:\n----------------\n";

 if (NPx.is_empty()) {out << "\nan EMPTY Nef-Polyhedron!\n";}
 else {

 out << " VALIDITY : [";

 155

 if (NPx.is_valid())
 { out << "OK";}
 else { out << "-1";}
 out << "]\n";

 out << " 2-MANIFOLD: [";
 if (NPx.is_simple())
 { out << "1";}
 else { out << "0";}
 out << "]\n";

 out << " ALLOCATED : ["<< NPx.bytes() / 1024.0 << " Kb]\n";

 out << " |V| = " << NPx.number_of_vertices() << "\n";
 out << " |F| = " << NPx.number_of_facets() << "\n";
 out << " |He| = " << NPx.number_of_halfedges() << "\n";

 out << " |E| = " << NPx.number_of_edges() << "\n";
 out << " |Hf| = " << NPx.number_of_halffacets() << "\n";
 out << " |Vol|= " << NPx.number_of_volumes() << "\n";

 }

 out << "----------------\n";
}

// Find & Report the wrong permutations in the list facets.
void Checker::check_FacetConsistency() {

 int i,j,r,c;
 Face F;

 int nop = points.size();
 int nof = facets.size();

 bool adj[nop][nop];
 bool isOK = true;

 std::cout << "\nChecking Facet orientations...";
 for (r=0; r<nop; r++)
 for (c=0; c<nop; c++)
 { adj[r][c] = 0;}

 for (i=0; i<nof ;i++) {
 F = facets[i];
 for (j=0; j<3 ;j++){
 r = j ; c = (j+1)%3;
 if (adj[F[r]][F[c]]) {
 // swap(F[r], F[c]);
 std::cout << "\nError : Facet[" << i << "], ";
 std::cout << F[r] << "->" << F[c] << std::endl;
 facets[i]= F;
 isOK = false;
 }
 }
 for (j=0; j<3 ;j++) {
 r = j ; c = (j+1)%3;
 adj[F[r]][F[c]]=1;
 }
 }

 if (isOK) std::cout << ": OK!\n";
}

 156

Outer.h

// Write polyhedron with native kernel representation to an OFF file.
template <class Poly>
void write_OFF(char* fname, const Poly& P) {

 typedef typename Poly::Vertex Vertex;
 typedef typename Poly::Vertex_const_iterator VCIt;
 typedef typename Poly::Facet_const_iterator FCIt;
 typedef typename Poly::Halfedge_around_facet_const_circulator HFCCirc;

 std::ofstream out(fname); CGAL::set_ascii_mode(out);

 // Writing Header
 out << "OFF\n"
 << P.size_of_vertices()
 << ' ' << P.size_of_facets() << " 0\n";

 // Writing Points
 for(VCIt vi = P.vertices_begin(); vi != P.vertices_end(); ++vi) {
 out << vi->point().x() << " "; //::CGAL::to_double()
 out << vi->point().y() << " ";
 out << vi->point().z() << "\n";
 }

 // Writing Facets
 HFCCirc HFc;

 for (FCIt fi = P.facets_begin(); fi != P.facets_end(); ++fi) {
 HFc = fi->facet_begin();
 CGAL_assertion(CGAL::circulator_size(HFc) >= 3);
 out << CGAL::circulator_size(HFc) << ' ';
 do {
 out << ' '
 << std::distance(P.vertices_begin(), HFc->vertex());
 } while (++HFc != fi->facet_begin());
 out << std::endl;
 }
 out.close();
};

class Outer {

 char name[64];

 public:
 Outer() {};
 ~Outer() {};

 void OFF(Polyhedron& Px, char* fname);
 void VRML1(Polyhedron& Px, char* fname);
 void VRML2(Polyhedron& Px, char* fname);
 void IV(Polyhedron& Px, char* fname);
 void OBJ(Polyhedron& Px, char* fname);
 void NEF3(Nef_polyhedron& NPx, char* fname);
};

// Write out a polyhedron in OFF file Format.
void Outer::OFF(Polyhedron& Px, char* fname) {

 157

 sprintf(name,"%s.OFF",fname);
 std::ofstream fout(name);
 fout << Px;
 fout.close();
}

// Write out a polyhedron in VRML v1.0 file Format.
void Outer::VRML1(Polyhedron& Px, char* fname) {

 sprintf(name,"%s.VRML1",fname);
 std::ofstream fout(name);
 CGAL::VRML_1_ostream out(fout);
 out << Px;
 fout.close();
}

// Write out a polyhedron in VRML v2.0 file Format.
void Outer::VRML2(Polyhedron& Px, char* fname) {

 sprintf(name,"%s.VRML2",fname);
 std::ofstream fout(name);
 CGAL::VRML_2_ostream out(fout);
 out << Px;
 fout.close();
}

// Write out a polyhedron in Open Inventor file Format.
void Outer::IV(Polyhedron& Px, char* fname) {

 sprintf(name,"%s.IV",fname);
 std::ofstream fout(name);
 CGAL::Inventor_ostream out(fout);
 out << Px;
 fout.close();
}

// Write out a polyhedron in Wavefront Object file Format.
void Outer::OBJ(Polyhedron& Px, char* fname) {

 sprintf(name,"%s.OBJ",fname);
 std::ofstream fout(name);
 print_wavefront(fout, Px);
 fout.close();
}

// Write out a polyhedron in NEF3 file Format.
void Outer::NEF3(Nef_polyhedron& NPx, char* fname) {

 sprintf(name,"%s.NEF3",fname);

 std::ofstream out(name);
 out << NPx;
 out.close();

}

globals.h

// C++ headers
#include <iostream>
#include <fstream>
#include <stdlib.h>

 158

#include <vector>
#include <algorithm>

// WSS headers
#include "wssreader.hh"
#include "waf_config.hh"
#include "wafertools.hh"
#include "wafelem.hh"

/////////// CGAL headers ///////////////////////////////////////

// Kernel Representations
#include <CGAL/Cartesian.h>
#include <CGAL/Homogeneous.h>
#include <CGAL/Gmpz.h>
#include <CGAL/Gmpq.h>

// Helper Classes
#include <CGAL/Object.h>
#include <CGAL/Timer.h>
#include <CGAL/Real_timer.h>
#include <CGAL/Memory_sizer.h>

// Polyhedron / Nef Polyhedron
#include <CGAL/Polyhedron_3.h>
#include <CGAL/Nef_polyhedron_3.h>
#include <CGAL/Polyhedron_incremental_builder_3.h>

// Output streams
#include <CGAL/IO/Polyhedron_iostream.h>
#include <CGAL/IO/Nef_polyhedron_iostream_3.h>

#include <CGAL/IO/Polyhedron_geomview_ostream.h>
#include <CGAL/IO/Polyhedron_inventor_ostream.h>
#include <CGAL/IO/Polyhedron_VRML_1_ostream.h>
#include <CGAL/IO/Polyhedron_VRML_2_ostream.h>
#include <CGAL/IO/print_wavefront.h>

// Visualization
#include <CGAL/IO/Geomview_stream.h>
#include <CGAL/IO/Qt_widget_Nef_3.h>
#include <qapplication.h>

///

// Necessary typedefs

// Number Types
typedef CGAL::Gmpq NT1;
typedef CGAL::Gmpz NT2;

// Kernels
typedef CGAL::Cartesian<NT1> K1;
typedef CGAL::Homogeneous<NT2> K2;

// Polyhedron / NEF
typedef CGAL::Polyhedron_3<K1> Polyhedron;
typedef Polyhedron::HalfedgeDS HalfedgeDS;
typedef CGAL::Polyhedron_3<K2> Polyhedron_K2;
typedef CGAL::Nef_polyhedron_3<K2> Nef_polyhedron;

// Our containers

 159

typedef std::vector<K1::Point_3> PointList;
typedef std::vector<int> Face;
typedef std::vector<Face> FaceList;

// Globals

PointList points;
FaceList facets;

NT1 xScale = NT1(10000);
NT1 xRescale = NT1(0.0001);

bool xVerbose = false;

enum boolOP { INT,UNI,SYM,D12,D21 };

 160

6.2 Modified Makefile

Created by the script create_makefile
This is the makefile for compiling a CGAL application.

#---#
include platform specific settings
#---#
Choose the right include file from the <cgalroot>/make directory.

CGAL_MAKEFILE = ENTER_YOUR_INCLUDE_MAKEFILE_HERE
include $(CGAL_MAKEFILE)

#---#
Our modifications
#---#

WSS_INCPATH = -I$(CGAL_INCL_DIR)/WAFER
WSS_LIBPATH = -L$(CGAL_LIB_DIR)/WAFER

The directory of our modules
ALPER_INC = -I/home/alperix/tu/prod/include

WSS_LIBS = -lwss-r -ldynwr -latt -lwss-w -loct -lquadXZ -lbtree \
 -lptsearch -ljaw -lwaf_base -lstate -lvbs \
 -lgeo-octel -lcfg-parse -lgeo -lantlr -ldyn -lerr -lser -liuecxx

Write here your source file name (without extension)
NSOURCE=sourceFileName

#---#
compiler flags
#---#

CXXFLAGS = \
 $(CGAL_CXXFLAGS) \
 -Iinclude \
 $(LONG_NAME_PROBLEM_CXXFLAGS) \
 $(DEBUG_OPT) \
 $(WSS_INCPATH) \
 $(ALPER_INC)

#---#
linker flags
#---#

LIBPATH = \
 $(CGAL_WINDOW_LIBPATH)\
 $(WSS_LIBPATH)

LDFLAGS = \
 $(LONG_NAME_PROBLEM_LDFLAGS) \
 $(CGAL_QT_LDFLAGS) \
 $(OPENGL_LIBS) \
 $(WSS_LIBS)
#---#
target entries

 161

#---#

all: \
 $(NSOURCE)$(EXE_EXT)

$(NSOURCE)$(EXE_EXT): $(NSOURCE)$(OBJ_EXT)
 $(CGAL_CXX) $(LIBPATH) $(EXE_OPT)

$(NSOURCE) $(NSOURCE)$(OBJ_EXT) $(LDFLAGS)

clean: \
 $(NSOURCE).clean

#---#
suffix rules
#---#

.C$(OBJ_EXT):
 $(CGAL_CXX) $(CXXFLAGS) $(OBJ_OPT) $<

6.3 Desktop picture

The following picture is illustrated at the start of this study. It was my
desktop picture during this study, since approximately one year.

 162

Chapter 7

7. Bibliography
Books:
[B01] J.A.Sethian : Level Set Methods & Fast Marching Methods, Cambridge University Press, 1988

[B02] Stan Gibilisco: The Illustrated Dictionary of Electronics / 8th Edition. McGraw-Hill, 2001.

[B03] Walter Nef: Beiträge Theorie der Polyeder. Herbert Lang & Cie AG, 1978.

[B04] C. Hoffmann: Geometric and Solid Modeling. Morgan-Kaufmann , 1989.

[B05] B. Stroustrup: C++ Programming Language,3rd Edition. Addison-Wesley , 1997.

[B06] Herbert Schildt: C++: The Complete Reference, 3rd Edition ,Osborne McGraw-Hill

[B07] Martti Mäntylä: An introduction to solid Modelling ,Computer Science Press, 1988

[B08] Ethan D.Bloch: A first course in geometric topology and differential Geometry ,Birkhäuser ,

1997

[B09] Afra J. Zomorodian :Topology for Computing , Cambridge University Press, 2005.

[B10] Paul Alexandrof : Elementary Concepts of Topology, Dower Publications, 1961.

[B11] M.E.Mortenson : Computer Graphics, Heinemann Newness.

Papers:
[P01] T. Binder, A. Hössinger, and S. Selberherr : Rigorous Integration of Semiconductor Process and

Device Simulators., 2003.

[P02] Godfried T. Toussaint : What is Computational Geometry? , 2000.

[P03] David Goldberg: What Every Computer Scientist Should Know About Floating Point Arithmetic,

March, 1991

[P04] Ioannis Z. Emiris, John F. Canny, and Raimund Seidel : Efficient Perturbations for Handling

Geometric Degeneracies , March, 1996

[P05] H.Bieri and W.Nef. Elementary Set Operations with d-Dimensional Polyhedra. in LNCS 333,

(p97-112) Edited by G.Goos and J.Hartmanis.

[P07] Glenn Chapman, Nick Pfeiffer, Jeffrey A. Johnson: Synergy of Combining Microfabrication

Technologies in Orbit

[P08] Jean Gallier : Convex Sets, Polyhedra and Polytopes: A Deeper Look, University of Pennsylvania

2003

CGAL related papers:
[Cp01] Stefan Schirra: Robustness and Precision Issues in Geometric Computation. ,1999

[Cp02] A.Fabri, G.J.Giezeman, L.Kettner, S. Schirra, S.Schönherr: The CGAL Kernel: A basis for

geometric Computation , 1999

 163

[Cp03] Sylvain Pion: About Arithmetic and Kernels.

[Cp04] S.Hert, M. Hoffman, L. Kettner, S.Pion, M.Seel : An Adaptable and Extensible Geometry

Kernel, 2001

[Cp05] A. Fabri, G.-J. Giezeman, L. Kettner, S. Schirra, and S. Schönherr. On the design of CGAL,

the Computational Geometry Algorithms Library. Software - Practice and Experience, 1998.

[Cp06] Stefan Schirra: Invited Lecture:Real Numbers and Robustness in Computational Geometry.

[Cp07] Lutz Kettner: Software Design in Computational Geometry and Contouredge based

polyhedron visualization , 1999

[Cp08] Lutz Kettner: Using Generic Programming for Designing a Data Structure for Polyhedral

Surfaces

[Cp09] M. Granados, P. Hachenberger, S. Hert, L. Kettner, K. Mehlhorn, and M. Seel : Boolean

Operations on 3D Selective Nef Complexes Data Structure, Algorithms, and Implementation.

[Cp10] L. Kettner, S. Schmitt, and N. Wolpert : Effective Computational Geometry References for Nef

Polyhedra, 2005.

[Cp11] Kurt Mehlhorn and Michael Seel: Research Report: Infimaximal Frames, A Technique for

Making Lines Look Like Segments,December 2000

[Cp12] L. Kettner : Software Design in Computational Geometry and Contour-Edge Based Polyhedron

Visualization, 1999

CGAL Documents:
[Cd01] CGAL User and Reference Manual:All parts, Release 3.1, 2004

[Cd02] CGAL Developers Manual, Release 2.3, 2002

[Cd03] CGAL 2D and 3D Kernel Manual, Release 3.0.1, 2004

[Cd04] CGAL d-Dimensional Kernel Manual, Release 3.0.1, 2004

[Cd05] CGAL Basic Library, Release 3.0.1, 2004

[Cd06] CGAL Support Library, Release 3.0.1, 2004

[Cd07] Monique Teillaud: Introduction to CGAL , 2004

[Cd08] Sylvain Pion: Generic Programming and CGAL , 2004

[Cd09] Getting started with CGAL , 1999.

[Cd10] Nef Polyhedra for Boolean operations.

Web Resources:
[Wr01] CGAL official web site : http://www.cgal.org/

[Wr02] LEDA official web site http://www.algorithmic-solutions.com/

[Wr03] GMP official web site http://www.swox.com/gmp/

[Wr04] CORE library project http://cs.nyu.edu/exact/core/

[Wr05] GeomView official web site http://www.geomview.org/

[Wr06] TROLLTECH official web site http://www.trolltech.com/

 164

[Wr07] OpenGL official web site http://www.opengl.org/

[Wr08] BOOST official web site http://www.boost.org/

[Wr09] WOLFRAM Research official web site http://mathworld.wolfram.com/Polyhedron.html

[Wr11] Yao-Joe Yang: Overview of Wafer Fabrication, http://www-yjy.me.ntu.edu.tw/

[Wr13] Thaddaeus Frogley : An introduction to C++ Traits http://thad.notagoth.org/

[Wr14] C++ ISO Syntax for Full Specialization http://zampano.zam.kfa-juelich.de/software/kccdoc

[Wr15] A. Prof. Dr. Ching-Kuang Shene Home site http://www.cs.mtu.edu/~shene/

[Wr16] NASA Learning Technologies Project http://www.grc.nasa.gov/WWW/K-12

